天长市化工集中区 区域性地震安全性评价报告

安徽省震灾风险防治中心 (安徽省地震工程研究院)

二零二一年七月

日	
前 言	····· 1
第一章 区域及近场区地震活动性分析	
1.1 区域地震资料	9
1.1.1 地震目录的编制说明	9
1.1.2 区域地震目录	10
1.1.3 区域历史地震可靠性与现代地震台网监测能力分析	12
1.2 区域地震的空间分布特征	13
1.2.1 区域中强震分布特征	13
1.2.2 区域现代小震分布特征	14
1.2.3 区域地震震源深度特征	15
1.3 区域地震时间分布特征及未来地震活动趋势分析	16
1.3.1 郯庐地震带	17
1.3.2 长江下游-南黄海地震带	19
1.4 现代构造应力场分析	20
1.4.1 大陆板块构造应力场	20
1.4.2 区域及邻区震源机制解和现代构造应力场	21
1.5 历史地震及近期显著地震对目标区的影响	25
1.5.1 历史地震对目标区的影响概况	25
1.5.2 目标区影响烈度分析	30
1.6 近场区地震活动性	31
1.7 小结······	32
第二章 区域地震构造环境	34
2.1 区域地质构造背景	34
2.1.1 大地构造分区及基本特征	34
2.1.2 地质构造演化概况	39
2.2 区域新构造运动分区及特征	40
2.2.1 区域及邻区地貌特征	40
2.2.2 区域新构造运动分区	4 1
2.2.3 区域新构造特征	45
2.2.4 区域现今地壳形变特征	46
2.3 区域地球物理场与地壳结构	48

\exists

2.3.1 区域重力场特征	49
2.3.2 区域磁场特征	49
2.3.3 区域地壳厚度	51
2.4 区域主要断裂及其活动性	52
2.4.1 北东向、北北东向断裂	53
2.4.2 近东西向、北西向、北西西向断裂	62
2.4.3 区域主要断裂活动特点	66
2.5 区域中强震地震地质标志	69
2.6 区域地震构造综合评价	70
附图I 区域地震构造图······	72
第三章 近场区地震构造评价	73
3.1 近场区地貌及地质构造基本特征	73
3.2 近场区第四系分布特征	75
3.3 近场区新构造运动特征	77
3.4 近场区主要断裂及其活动性	78
3.5 近场区地震构造环境综合评价	83
附图II 近场区地震构造图	84
第四章 目标区地震工程地质条件勘测及断层探查	85
4.1 目标区场地地质概况	85
4.1.1 目标区场地地形地貌	85
4.1.2 目标区场地水文地质条件	86
4.2 目标区场地勘测与土层结构	87
4.3 目标区场地剪切波速与场地类别划分	108
4.3.1 目标区场地土层剪切波速	108
4.3.2 目标区场地类别的划分	115
4.4 目标区场地土样动力特性参数测试	116
4.5 目标区场地工程地质分区	130
4.6 目标区主要断层勘查和活动性鉴定	131
4.6.1 地震地质条件	132
4.6.2 采集参数	133
4.6.3 浅层地震勘探成果分析	135
第五章 地震危险性分析	138
5.1 方法概述	138

5.2 潜在震源区的划分	139
5.2.1 潜在震源区划分原则	139
5.2.2 潜在震源区震级上限确定的依据	140
5.2.3 潜在震源区边界的确定	140
5.2.4 潜在震源区划分结果	141
5.3 地震活动性参数的确定	145
5.3.1 地震带活动性参数的确定	145
5.3.2 潜在震源区活动性参数的确定	147
5.4 地震动衰减规律	149
5.5 地震危险性分析结果	152
第六章 目标区地震动参数确定	160
6.1 目标区场地基岩的人造地震动时程	160
6.1.1 方法简介	160
6.1.2 基岩地震动时程合成参数••••••	161
6.1.3 合成基岩加速度时程	162
6.2 目标区场地一维土层地震反应计算方法简介	165
6.3 目标区场地一维计算土层模型动力参数的确定	166
6.4 目标区场地土层地震反应分析结果••••••	174
6.5 目标区地震动参数的确定	185
6.5.1 设计地震动反应谱形式	185
6.5.2 设计地震动参数分区	186
6.5.3 竖向地震动	188
6.6 目标区设计加速度时程	188
第七章 目标区地震地质灾害评价	191
7.1 砂土液化评价	191
7.1.1 砂土液化评价方法	191
7.1.2 液化判别和评价结果	194
7.2 软土震陷评价	195
7.3 活动断层断错评价	196
7.4 滑坡、崩塌评价	197
7.5 结论	197
第八章 主要结论和建议	199
8 .1 主要结论······	199

8.2 建议及成果使用说明	204
参考文献	206

前 言

0.1 项目概述

天长市化工集中区于2013年4月9日经滁州市人民政府批准成立,规划 用地面积为2.34 km²。天长市化工集中区位于天长市铜城镇地处两省(皖、 苏)三县市(江苏省金湖、盱胎县,安徽天长市)交界,水、陆交通便捷。集 中区周边1公里范围内有省道S204线,四级航道及港口,在建道路工程有 省道S205线、宁淮高铁线,高铁站毗邻集镇,规划建设道路工程有高速公 路天仪线、省道S427。

以天长市及铜城镇现有化工产业为依托,重点发展环保型涂料及相关 产业,同时整合周边工程塑料原料、医药化工等企业,将集中区内产品做 精做细,最大限度延伸产品链,提高产品的附加值,打造皖江地区特色化 工集中区。。图0-1为园区规划范围图。截止2020年底,天长市化工集中区 共有入驻7家,其中投产企业6家,调试企业1家,签约企业8家。以上15家 企业中,油漆制造企业6家,环保新材料4家,医药生物2家,油脂化工2家, 塑料原料1家。2020年园区总产值2.3891亿元,园区化工产值2.3891亿元, 入园企业总纳税额568.2万元。图0-1为园区规划用地图。

图 0-1 天长市化工集中区规划图

根据《安徽省区域性地震安全性评价工作管理办法(暂行)》,该标准地 需开展区域性地震安全性评价工作。受天长市铜城镇人民政府委托,安徽省 震灾风险防治中心(安徽省地震工程研究院)承担天长市化工集中区区域性 地震安全性评价工作。

本次评价的工作范围位置如图0-2所示,图中蓝色实线框范围为目标区。目标区即为需要采用区域性地震安全性评价结果进行抗震设防的范围,本次评价涉及的区域范围面积为2.01 km²的未建设用地。根据国家标准《中国地震动参数区划图》(GB 18306-2015),目标区位于峰值加速度0.05g分区,反应谱特征周期为0.4s。

图 0-2 本次评价目标区位置(蓝线范围为目标区)

0.2 工作依据

本项目实施过程中以下列法律法规为依据:

- (1)《中华人民共和国防震减灾法》(2009年实施);
- (2)《地震安全性评价管理条例》(中华人民共和国国务院令第323号);
- (3)《安徽省防震减灾条例》(2012年实施);
- (4)《安徽省建设工程地震安全性评价管理办法》(安徽省政府令 291);
- (5)《工程场地地震安全性评价》(GB 17741-2005);
- (6)《安徽省区域性地震安全性评价工作管理办法(暂行)》(2018年)
- (7)《区域性地震安全性评价工作大纲(试行)》中震防函(2019)21号
- (8)《中国地震动参数区划图》(GB 18306-2015);
- (9)《活动断层探测》(GB/T36072-2018);

- (10)《建筑抗震设计规范》(GB 50011-2010, 2016 年版);
- (11)《构筑物抗震设计规范》(GB50191-2012);
- (12)《岩土工程勘察规范》(GB 50021-2001, 2009 版);
- (13)《地基动力特性测试规范》(GB/T50269-2015);
- (14)《天长市化工集中区区域性地震安全性评价实施方案》;
- (15) 委托方提出的相关技术要求。

0.3 技术思路

依据《安徽省区域性地震安全性评价工作管理办法(暂行)》和《区域性地震安全性评价工作大纲(试行)》(中震防函〔2019〕21号)开展工作,主要技术思路如图 0-3 所示。

区域以目标区为中心、半径 200km 范围,近场区则以目标区场地边界 外延 25km 范围。在充分收集、整理和分析研究区域范围内的地震地质、 地球物理、地震活动、地震工程等方面已有成果和资料的基础上,着重在 近场区和目标区范围内开展地震地质调查,布置物探测线开展断裂构造勘 探,开展场地工程地震的地质条件勘察,收集整理工程地质勘探资料和水 文地质资料以及一些地质灾害资料等,进行地震活动性分析,确定工作区 内潜在震源区及其地震活动性参数,选择合适的区域性地震烈度和地震动 衰减关系、合理的震源模型和地震复发模型,采用地震危险性概率方法计 算分析,得出对应不同设防水准(50年超越概率 63%、10%、2%)的基岩 地震动水平峰值加速度值,进而确定相应的基岩地震动水平向加速度时 程,建立目标区多概率水准的基岩地震动参数数据库。

收集场地范围内已经开展的地震安全性评价工作的钻孔资料,尤其是 深孔的岩土层的波速资料和土工实验数据等,进行综合判断分析,充分了 解场地的地震地质条件、工程地质和水文地质条件。依据《区域性地震安 全性评价工作大纲(试行)》(中震防函(2019)21号)要求,根据目标区工 程地质条件和目标区建设工程的功能布局规划,合理布置钻孔。除基岩区 外,控制孔的空间间隔应不大于 700m,已规划的重要工程场地至少应当布 置1个控制孔,对于浅部土层结构复杂地段应当加密钻孔进行控制。对控 制钻孔取土样进行土动力性能试验,在控制性钻孔中进行土层剪切波速的 原位测试工作,结合不同场地条件和地质资料、各类土的静、动力学参数, 建立模型进行场地土层地震反应分析,计算给出不同控制钻孔对应不同设 防水准(50年超越概率 63%、10%、2%)的峰值加速度,以及反应谱(阻 尼比为 0.05),编制目标区多概率水准的地震动峰值加速度、反应谱区划 图。收集、整理和综合分析地质条件、水文地质条件以及所处的不同工程 害进行评价,包括地震液化、软土震陷,以及其它可能的地震地质灾害。 并在上述工作的基础上,建设基于 GIS 平台的数据库和地理底图库,并具 备相应服务功能的技术系统。

0.4 工作范围

根据中国地震局《区域性地震安全性评价工作大纲(试行)》(中震防函(2019)21号)及《安徽省区域性地震安全性评价工作管理办法(暂行)》的规定,确定本项目区域、近场区及目标区工作范围:

(1)区域范围:目标区外延 200km,考虑场地周围的地震地质构造和 地震活动环境条件,取区域范围经纬度为:东经 116.779°~121.069°,北纬 31.054°~34.677°;

(2)近场区范围:目标区外延25km,取近场区范围经纬度为:东经118.632°~119.213°,北纬32.625°~33.112°;

(3)目标区范围:天长市化工集中区区域性地震安全性评价工作范围(图 0-2中蓝色实线范围)。

0.5 主要工作内容

区域性地震安全性评价,包括目标区主要断层活动性鉴定、地震危险 性评价、地震动参数评价和地震地质灾害初步评价。其基本工作内容包括: 区域地震活动性和地震构造评价,近场区地震活动性和地震构造调查与评 价,目标区主要断层勘查和活动性鉴定,目标区浅部土层结构三维模型建 立,地震动预测方程确定,目标区概率地震危险性分析,地震工程地质条 件钻孔勘查、土层波速与非线性参数测试,典型土层模型建立、场地地震 反应分析与地震动参数确定等,建立目标区地层数据体和多参数地震动参 数数据体,建设区域性地震安全性评价技术服务系统。依据场地工程地质 条件,由技术服务系统计算给出设定场点建设工程所需的设计地震动参 数,并给出地震地质灾害初步评价结果。

在广泛收集整理资料的基础上,对区域、近场区和目标区三个层次开展工作。区域地震构造的研究范围为目标区外延200km,近场区范围为目标区外延25km。

考虑目标区的具体情况,本次工作内容如下:

(1)区域地震活动性和地震构造分析。在对区域范围内资料收集和整理的基础上,分析区域地震活动特征和未来地震活动趋势,评价区域范围内地震发生的条件,判识区域范围内对场地地震危险性有影响的发震构造,综合评价区域地震构造环境和地震活动水平,为地震区、带划分、地震构造区划分和潜在震源区划分及边界厘定、地震活动性参数确定等提供依据。

(2)近场区地震活动性及地震构造评价。在收集已有研究资料的基础上,利用地球物理探测和地震地质考察等方法,确定近场区范围内的主

5

要断裂的特性及其展布位置,通过地质学、地层学和年代学等方法评价断裂的最新活动时代。研究近场区范围内的地震活动情况,分析近场区范围内的小震空间和时间分布特征及其与活动构造之间的关系。

(3)目标区主要断层勘查和活动性鉴定。在收集已有研究资料的基础上,通过场地地貌调查、地质考察、地球物理勘探、结合古地震探槽、工程地质钻探等工作,确定目标区及附近地区主要断裂的特性及其展布位置,通过地质学、地层学和年代学等方法评价断裂的最新活动时代。如发现活动断层,将开展专门的活断层地震危险性与危害性分析,最终给出活断层是否需要避让以及如何避让的建议和具体措施。

(4)地震工程地质条件勘测。收集、整理、分析场地及附近地区已有的工程地质勘察资料、水文地质等资料,以便于对场地工程地质概况有基本了解。根据目标区浅部土层结构和目标区建设工程的功能布局规划,按照钻孔间距不大于700米的标准布设钻孔,对于浅部土层结构复杂地段加密钻孔进行控制,空间间隔一般不大于500米。研究水文地质资料和工程地质资料,进行工程地质单元分区。在场地范围内进行13个钻孔波速测试,开展场地土层动力性能参数测试工作,为场地地震动效应研究和地震动参数确定提供基础数据。

(5)概率地震危险性评价。在地震区、带划分的基础上,吸收本地 区最新的研究成果,划分潜在震源区,根据地震活动空间分布图象和地震 构造特征确定潜在震源区边界,确定地震区带和潜在震源区的地震活动性 参数。根据区域及邻区的地震等震线图或地震烈度资料以及强震观测资料 等,确定适合本地区的基岩地震动衰减关系。进行地震危险性概率分析, 确定场地不同超越概率水平下的基岩地震动参数。

(6)场地地震动效应分析及场地地震动参数确定。采用适用于本地 区的反应谱衰减关系,确定场地不同概率水准的基岩反应谱,合成具有场 址区地震动特征的基岩地震动加速度时程,以此作为场地地震动效应分析 的输入地震波。根据场地原位测试及实验室试验结果和场地地震工程地质 条件,建立土层地震动反应分析模型。进行场地土层的地震反应分析研究 场地的地震动效应,确定目标区控制点不同超越概率水平向地震动峰值加 速度、反应谱。建立目标区各计算控制点的自由基岩场地地震动时程数据 库、地震反应分析模型数据库、地表地震动参数数据库和地表地震动时程 数据库。

(7)地震地质灾害评价。通过对历史地震资料的考证、调查与分析, 查明目标区及其附近地区地震地质灾害类型和程度,并结合现场地震地质 灾害场地勘查,对目标区地震地质灾害作出预测与评价,编制给定概率水 平地震作用下的地震地质灾害分区图。

6

(8)技术服务系统。按照系统的需求,对区域性地震安全性评价成 果数据进行对象化处理后,采用预处理方式检查并入库后,运用空间数据 管理、GIS 可视化、数据库等技术,设计区域性地震安全性评价技术服务 系统,实现区域性地震安评成果的查询、输出与服务功能。

0.6 工作量统计

为使任务迅速、圆满完成,我院先后安排、组织技术人员从 2021 年 5 月开 始进行工作大纲论证、现场钻探、波速测试及场地与近场区隐伏断层探测、区 域和近场区地震地质调查等野外工作,2021 年 6 月底完成实验测试、分析计算 工作和报告编写工作,实际工作量详见表 0-1。

调查断裂	6条
断层观察点	7 个
第四系地质与地貌观察点	4 个
剖面素描图	8 张
野外照片	120 张
浅层地震勘探	2条(总长 3.5km)
钻孔	13 孔(总进尺 791 米)
剪切波速测试	13 孔
动三轴样品测试	23 组
危险性分析计算点	13个基岩控制点
基岩人造地震动时程合成	65 条
土层反应分析模型	13 个
设计地震动参数	1个参数分区
技术服务系统	1 套

表 0-1 项目工作量统计表

0.7 项目组成员

项目总负责:戚浩(高级工程师)、缪鹏(高级工程师)

技术总负责:曹均锋(高级工程师、一级地震安评师)、杨源源(高级工程师)

地震活动性评价专题组:路硕、赵楠(高级工程师)

地震构造评价专题组:郑颖平(高级工程师)、杨源源(高级工程师)、李鹏 飞

工程场地地震影响评价专题组:杨源源(高级工程师)、冯伟栋(一级地震 安评师)、彭刘亚、袁泉、桂亚平、李飞、李 勇、吕雨泽 后勤保障组:谈昕、王秋芳、张婷婷、杨自云、刘泽祥、胡卫民

0.8 致谢

本项目在实施过程中得到了安徽省地震局、天长市铜城镇人民政府、滁州市 地震局等单位的大力支持和协助,在项目完成之际,向上述单位、领导和专家 一并表示衷心感谢!

第一章 区域和近场区地震活动性分析

本章通过对区域范围内地震目录的统计,分析地震在空间上的分布特征;根据地震区、带划分,对地震带地震活动性进行分析;对区域地震震 源深度进行了分析,确定区域地震震源深度分布特征;分析了区域震源机 制解与构造应力场、区域地震对场地的影响,并分析了近场区地震活动性。 通过本章工作,为区域和近场地震环境评价、合理地划分潜在震源区和确 定其地震活动性参数提供依据。

1.1 区域地震资料

丰富、连续、完整的地震目录是地震活动分析必不可少的基础资料, 是分析结果可靠性的保证。本次区域范围地震资料主要来源于:

(1)区域 M≥4.7级地震资料主要来源:

 ①《中国历史强震目录(公元前23世纪~公元1911年)》,中国地震局 震害防御司编,地震出版社,1995;

②《中国近代地震目录(1912~1990)》,中国地震局震害防御司编, 中国科学技术出版社,1999;

③中国地震台网统一地震目录,中国地震科学数据共享中心 (http://data.earthquake.cn/forward.jsp);

④苏.浙.皖.沪地震目录(公元225-2000年),刘昌森、景天永、孙庆 垣、王锋、黄佩编,地震出版社,2002。

(2)区域现代中小地震资料主要来源:

区域现代中小地震资料取自中国地震台网中心整理汇编的全国地震目录、中国地震局地球物理研究所编制的《地震观测报告》及安徽省地震目录及邻区地震台网地震目录。

1.1.1 地震目录的编制说明

本次工作编制了区域 M≥4.7级地震目录和区域近代中小地震目录。

(1)区域 M≥4.7级地震目录编制情况

区域 M≥4.7级地震目录起、止时间为公元294年和2020年。1900年以前的地震是根据历史记载评定震中烈度,再按照震级——烈度关系换算出近似 震级,震级——烈度关系式中的震级为面波震级 Ms。1900年以后有仪器记录 的地震,采用根据仪器记录得到的地震参数,震级也是面波震级 Ms。自公元294年以来,区域共记录到 M≥4.7级地震55次。

(2)区域现代中小地震目录编制情况

现代中小地震通常用近震震级 M,为了与历史地震保持一致,通常用 郭履灿等(1981)研究得到的震级转换关系式将其转换为面波震级 Ms。

在编辑新一代地震动参数区划图(GB18306-2015)时,汪素云等(2009) 根据1990-2007年《中国地震年报》中同时给出 Ms 和 M 震级,且震源深度 小于70公里的6577个浅源地震资料,统计回归得到了全国和各地区的 Ms 和 M 之间的经验关系,新的转换关系近于 Ms= M。

因此本报告中将不再对 Ms 和 M 进行区分,而是统一采用 M。自1970年以来,区域范围共记录到中小地震2092次。

1.1.2 区域地震目录

根据上述资料,编制了区域范围内破坏性地震(M≥4.7)目录(表1.1-1), 自有地震记载以来(公元294年),工程研究区域范围内共记载 M≥4.7级地 震55次,其中 M≥6级地震7次,5≤M<6级地震30次,4.7≤M<5级地震18次, 其中震级最大为 M6¹/2级地震。

店县	出雪旪间	震中	位置	震级	长去州夕	深度(km)	 唐 চ	震中列度	
לי דו	及辰时闪	北纬	东经	(M)	今ろ地石	体及(KIII)	相反	辰千八反	
1	公元前 280	34.40°	118.80 °	5 ¹ / ₂	山东东海南	-	-	-	
2	294-07	32.60 °	116.80 °	$5^{1}/_{2}$	安徽寿县	-	2	VII	
3	320-07-18	31.70°	119.70°	5	江苏金坛东南	-	-	-	
4	499-08-04	32.10 °	118.80 °	$4^{3}/_{4}$	江苏南京	-	4	VI	
5	548-10-27	32.10 °	118.80 °	5 ¹ / ₄	江苏南京	-	5	-	
6	701-08-16	33.00 °	121.00 °	6	黄海	-	5	VI	
7	999-11-03	31.80°	119.90 °	5 ¹ / ₂	江苏常州	-	2	VII	
8	1491-09-14	32.70 °	119.00 °	5	安徽天长北	-	3	-	
9	1495-10-30	34.60°	119.10 °	4 ³ / ₄	江苏连云港海州	-	3	-	
10	1500-11-18	32.40 °	118.20 °	4 ³ / ₄	安徽滁县西北	-	-	-	
11	1501-01-27	31.30°	120.60 °	4 ³ / ₄	江苏苏州	-	3	V	
12	1502	33.40°	120.10 °	4 ³ / ₄	江苏盐城	-	-	-	
13	1524-03-19	31.30°	120.10 °	5	江苏吴县太湖里	-	3	V	
14	1537-05-13	33.60 °	117.60 °	5 ¹ / ₂	安徽灵璧	-	2	VII	
15	1546-09-19	34.50°	117.70 °	5 ¹ / ₂	江苏邳县寨山	-	3	VII	

表1.1-1 工程研究区域内 M≥4.7级地震目录

16	1585-03-06	31.20 °	117.70 °	5 ³ / ₄	安徽巢县南	-	3	VII
17	1615-03-01	32.00 °	120.90 °	5	江苏南通狼山镇	-	2	VI
18	1624-02-10	32.40 °	119.40 °	6	江苏扬州	-	3	VIII ⁻
19	1630-02-04	32.00 °	119.20°	4 ³ / ₄	江苏句容	-	3	VI
20	1642	33.10 °	118.50 °	5	江苏盱眙北	-	3	VI
21	1642-10-04	34.20 °	116.90 °	4 ³ / ₄	安徽萧县	-	2	VI
22	1643-10-23	34.20°	116.80 °	4 ³ / ₄	安徽萧县西北	-	3	-
23	1644-02-08	32.90 °	117.50 °	5 ¹ / ₂	安徽凤阳	-	2	VII
24	1658-09-19	31.50 °	121.00 °	4 ³ / ₄	江苏太仓西北	-	3	-
25	1662	33.40°	120.10 °	4 ³ / ₄	江苏盐城	-	2	VI
26	1673-03-29	31.80 °	117.30°	5	安徽合肥	-	3	VI
27	1676-06-11	32.40 °	119.40 °	4 ³ / ₄	江苏扬州	-	2	VI
28	1678-05-24	31.30°	120.90 °	4 ³ / ₄	江苏吴县东	-	3	-
29	1679-12-26	31.40°	119.50°	5 ¹ / ₄	江苏溧阳	-	3	VII
30	1712-12-22	32.30°	119.00 °	4 ³ /4	江苏六合	-	4	-
31	1731-11-00	31.30°	121.00 °	5	江苏昆山南	-	2	VI
32	1764-06-27	33.00 °	121.00 °	6	黄海	-	4	-
33	1829-11-18	33.20 °	117.90°	5 ¹ / ₂	安徽五河	-	2	VII
34	1831-09-28	32.80 °°	116.80 °	6 ¹ /4	安徽凤台东北	-	2	VIII
35	1839-10-12	31.50 °	119.20 °	4 ³ / ₄	江苏溧阳	-	-	-
36	1855-01-15	31.20 °	121.00 °	4 ³ / ₄	江苏苏州东	-	3	-
37	1868-10-30	32.40 °	117.80 °	5 ¹ / ₂	安徽定远南	-	1	VII
38	1872-07-24	32.20 °	119.30 °	4 ³ / ₄	江苏镇江西	-	3	-
39	1913-04-03	32.20 °	119.40 °	5 ¹ / ₂	江苏镇江	-	-	-
40	1927-02-03	33.50 °	121.00 °	6 ¹ / ₂	黄海	-	-	-
41	1927-02-03	33.50 °	121.00 °	6 ¼	黄海	-	-	-
42	1927-02-19	33.50 °	121.00 °	5	黄海	-	-	-
43	1927-02-22	33.50 °	121.00 °	5 ¹ / ₂	黄海	-	-	-
44	1927-06-08	33.50 °	121.00 °	5 ¹ / ₄	黄海	-	-	-
45	1930-01-03	32.20 °	119.40 °	5	江苏镇江	-	-	-
46	1942-07-27	33.00 °	121.00 °	5	黄海	-	-	-
47	1949-01-05	33.20 °	121.00 °	5	黄海	-	-	-

48	1949-01-14	33.20°	121.00 °	5 ³ / ₄	黄海	-	-	-
49	1974-04-22	31°27′	119°20′	5.5	江苏溧阳	16	1	>VII
50	1979-03-02	33°11′	117°25′	5.0	安徽固镇	11	1	VI
51	1979-07-09	31°27′	119°15′	6.0	江苏溧阳	12	1	VIII
52	1987-02-17	33°35′	120°32′	5.0	江苏射阳东南	18	1	-
53	1990-02-10	31°41′	121°00′	5.1	江苏常熟、太仓间	15	1	-
54	1991-11-05	33°41′	121°01′	4.7	江苏射阳西南	25	1	-
55	2012-07-20	33°00′	119°36′	4.9	江苏高邮、宝应交界	5	1	-

(注: 1970年以前地震表示为××.××°, 1970年以来地震表示为×× °××′)

1.1.3 区域历史地震可靠性与现代地震台网监测能力分析

(1)历史地震可靠性

本目标区处于安徽东部,所涉及的安徽、江苏、河南、江西等省是我国经济、文化发展最早的地区之一,自公元前280年就有地震记载,区域地震资料记载时间长。但1400年以前仅有7次历史地震记载,显然地震记载缺失较多,可靠性不高;对1400年以来记载的历史地震进行分析,结果表明1400年以来历史地震记载相对完整,可靠性较高。

(2)现代地震台网监测能力

1970年以来,安徽及邻省逐步形成地震观测台网(图1.1-1),近年来,随着数字地震台网的建设,安徽省除大别山部分地区监控能力为 M≥0.1级,其他大部分地区监控能力为 M≥1.0级;江苏省数字地震台网可以控制江苏中东部地区 M≥2.5级地震和全省及周边地区 M≥3.0级地震(王保太等,2001);河南省全省地震监测能力达到 M≥2.0级。综合区域各省地震台网监测能力,并考虑到数据量,区域现代地震活动分析的震级下限取 M2.0级。

图1.1-1 区域地震台网监测能力示意图(据安徽省地震监测中心, 2020)

1.2 区域地震的空间分布特征

1.2.1 区域中强震分布特征

区域历史地震活动空间分布不均匀,往往与活动构造密切相关。工作 区中西部为北北东向地震活动带,大体上与郯庐断裂带走向一致,该断裂 带历史上曾发生1668年7月25日郯城Ms8¹/2级大地震。工作区东部则以北东 向及北西向地震条带活动为主,其中,黄海、茅山东侧断裂带及其附近地 区及昆山附近表现为中强震活动丛集性。区域内的最大地震为1927年发生 在黄海海域的M6¹/2级地震,区域范围内2012年7月20日在江苏高邮、宝应 交界发生的Ms4.9级地震为区域范围内发生的最近一次破坏性地震。

图 1.2-1 区域 M≥4.7级地震震中分布图(公元294年~2020年12月)

1.2.2 区域现代小震分布特征

1970年以来,区域内共发生 M2.0级以上地震2092次(图1.2-2),可以 看出区域现代小震活动并不均匀,具有下列分布特征:

(1) 仪器记录地震与历史中强地震活动的空间分布特征基本一致,工 作区东部地震分布密集,扬州、溧阳、黄海海域及苏北沿海地区等地小震 分布相对集中。

(2)小震活动明显呈条带分布,区域内呈现新沂~宿迁~定远~庐江 和溧阳~扬州~盐城2个近南北向的小震密集带。其中新沂~宿迁~定 远~庐江小震密集带位于郯庐断裂带中南段附近,近年来地震活动较为频 繁,曾发生2006年7月26日定远 M4.2级地震,2009年4月6日肥东 M3.5级地 震及2012年4月8日江苏金湖 M3.6级地震。溧阳~扬州~盐城地震带上发生 过1979年7月9日的6.0级地震。

总体来看,区域内中小地震与历史中强地震活动的空间分布相似,都

与北东向和北西向地震构造运动关系密切。

1.2.3 区域地震震源深度特征

考虑到历史地震只有少数有震源深度资料,本次工作主要取1970年区域地震台网建立以来 M≥2.0级地震的数据统计地震震源深度分布。区域共记录1006个地震有深度数据,图1.2-3为区域范围内地震震源深度分布直方图,表1.2-2为区域震源深度分布数据。

从表1.2-2中可以看到,在整个目标区内地震震源深度在25km 以内高达95%,其中又以5~19km 范围居多,研究区域所发生的地震绝大部分属于地壳中上层的浅源构造地震。

震源深度(km)	1-4	5-9	10-14	15-19	20-24	≥25	
地震个数	8	227	352	238	138	43	
百分比(%)	0.8%	22.6%	35%	23.7%	13.7%	4.2%	

表1.2-2 区域震源深度分布统计表

图 1.2-2 区域现代地震(M≥2.0级)震中分布图(1970年~2020年12月)

图1.2-3 区域地震震源深度分布直方图

1.3 区域地震时间分布特征及未来地震活动趋势分析

根据大地构造背景和地震活动特征,我国东部地区以黄石~九江~屯 溪~宁波一线为界划分为华北和华南两大地震区。华北地震区是我国主要 强震活动区,历史上多次发生7级以上强震。华北地震区的地震活动具有 北强南弱的特征,大约以北纬34°40′为界,北部为强震活动区,南部是 中强地震活动区。根据地震区内地震构造、地球物理场及地震活动性相一 致的原则,地震区又可划分为若干地震带。

参考五代区划图的地震区、带的划分结果,研究区域处于华北地震区的南部,主要跨越郯庐地震带和长江下游~南黄海地震带(图1.3-1,图中虚框为区域范围),目标区位于长江下游~南黄海地震带内。

图1.3-1 华北地震区分布范围示意图 (据新一代区划图最新研究成果, 2012)

(1) 郯庐地震带

郑庐地震带是我国东部规模最大的地震统计带,该区包括 NNE 向郑 庐断裂带及其附近的一系列与它平行和斜交的次级断裂,我国历史上著名的 1668 年 7 月 25 日郯城 M8¹/2 级地震就发生在本带。该带地震活动分布 不均匀,强震主要分布在该带西部郯庐主干断裂和一些与它平行或斜交的 次级断裂上,并以安丘-莒县、渤中一带活动最为强烈,远离这些断裂的地 区地震活动就明显减弱。

该带最早的地震记载为公元前 70 年 6 月 1 日安丘 M7 级地震。图 1.3-2 和图 1.3-3 分别给出公元前 100 年和 1400 年以来郯庐地震带 M≥4³/4 级地震的 M-t 图与应变释放曲线。由图 1.3-2 中可以看出 1400 年之前,仅记有 13 次地震,地震缺失较多,1400 年后地震记录才基本完整。从图 1.3-3 上看,1400 年以来该带经历有两个地震活跃期(1477-1687,1829-?),上一地震

活跃期发生过 1668 年 M8¹/2 级巨震,这一活跃期的地震活动水平比上一活 跃期弱得多,但目前仍处在地震活跃期的后期。从保守角度,未来百年仍 应考虑活跃期的地震活动水平。

图 1.3-2 公元前 100 年以来郯庐地震带 M-t 图及应变释放曲线

图 1.3-3 1400 年以来郯庐地震带 M-t 图及应变释放曲线

(2)长江下游-南黄海地震带

长江下游-南黄海地震带包括长江下游及南黄海海域。在大地构造上, 该区主要位于扬子准地台,新生代以来以沉降为主。在构造背景上,海域 为一系列北东东-东西向的凹陷,中强震多发生在这些凹陷中,6-7级强震 也多发生在海域部分;陆域以中强地震活动为主,断裂总体走向为北东-北东东,偶见晚更新世活动断裂,地震主要发生在北西与北东向构造交汇 部位。由于该区断裂规模相对较小,多为正断层性质,因此该地震统计区 内主要为中强地震,最大地震震级为7级。

该区最早的地震记载为 499 年 8 月 5 日南京 M4³/₄ 级地震。图 1.3-4 和图 1.3-5 分别给出长江下游-南黄海地震带 400 年和 1450 年以来 M≥4³/₄ 地震的 M-t 图和应变释放曲线。由图 1.3-4 中可以看出 1485 年之前,仅记 有 4 次地震,地震缺失较多,1485 年后地震记录才基本完整。从图 1.3-7 分析,1485 年以来该区经历有两个地震活跃期(1491-1679 年,1839-? 年), 第一活跃期地震明显有遗漏。第二活跃期地震活动又经历有三个活跃幕, 每幕约经历 40 余年。长江下游-南黄海地震带现正处于第二活跃期的第三 个活跃幕。从保守角度出发,未来地震活动应以活跃期水平估计为宜。

图 1.3-4 400 年以来长江下游-南黄海地震带 M-t 图及应变释放曲线(M≥4³/4级)

1.4 现代构造应力场分析

(1)大陆板块构造应力场

中国大陆位于亚欧板块的东南缘,其构造应力场的力源主要为印度板 块和亚欧板块的陆-陆碰撞作用,和太平洋板块、菲律宾板块的海-陆俯冲 带作用的共同影响,其中印度板块碰撞挤压作用远大于太平洋板块和菲律 宾板块的俯冲作用。强震往往受构造应力场的控制,因此强震的震源机制 解是反演构造应力场最为直接、经济的资料来源。基于全球 M≥5.0级地震 的震源机制解资料,利用应力张量平均法,反演得到中国大陆附近的三个 主要板块边界的构造应力场空间分布(图1.4-1)。印度板块与亚欧板块交 界线的中部具有稳定的北东20°的挤压作用,这与全球的 GPS 观测结果非 常类似;太平洋板块和菲律宾板块与亚欧板块的交界线附近构造应力场相 对较为均匀,显示较为稳定的北西向俯冲作用。

图1.4-1 板块边界构造应力场分布(据安徽省地震局刘泽民等, 2011)

(2)区域及邻区震源机制解和现代构造应力场

地震发生是受构造应力场控制的,对区域地震震源机制解进行统计分析,可了解现代构造应力场的基本特征,从而有助于对区域内地震活动性和活动特点的分析。

对区域及邻区96次 M1.9级以上地震进行震源机制解分析,统计成区域 震源机制解表(表1.4-1)。

发震时间	震中	位置	震		I节面		Ⅱ节面			P 轴		T 轴	
年日日	纬度	经度	级	走向	倾角	滑动角	走向	倾角	滑动角	方位	倾角	方位	倾角
平月日	(°)	(°)	(M)	(°)	(°)	(°)	(°)	(°)	((°)	(°)	(°)	(°)
1973-3-11	31.40	116.20	4.3	65	65	-	319	52	-	288	44	199	12
1973-3-11	31.40	116.20	4.5	35	85	-	302	54	-	85	28	343	2
1973-9-22	33.60	116.50	4.0	83	85	-	356	65	-	37	23	133	12
1974-4-22	31.40	119.30	5.5	27	6	-	276	69	-	I	-	-	-
1976-6-14	32.00	117.50	3.0	21	75	-	295	75	-	247	2	337	2
1976-8-30	32.50	117.10	3.6	2	65	-	285	65	-	53		323	37
1976-11-27	32.30	117.90	3.1	65	77	-	319	6	-	283	4	191	3
1977-5-10	31.60	119.10	4.1	42	55	-	124	-	-	-	-	-	-
1978-4-14	32.50	117.40	2.3	46	74	-	291	-	-	-	-	-	-
1979-3-2	33.20	117.40	5.0	44	55	-	294	65	-	255	45	351	6

表1.4-1 区域及邻区震源机制解表

1979-5-31	33.20	117.42	3.2	41	82	-	302	6	-	265	33	168	1
1979-7-9	31.50	119.30	6.0	62	5	-	308	66	-	268	4	8	82
1981-5-10	31.38	116.17	2.8	67	75	-	32	6	-	103	44	193	1
1981-5-20	32.18	117.60	2.7	45	6	-	297	47	-	89	44	346	14
1982-3-29	31.47	117.40	2.1	45	6	-	317	85	-	9	7	2	14
1982-9-19	31.20	119.20	2.3	56	65	-	311	6	-	95	41	2	35
1983-3-28	33.20	117.40	3.0	44	65	-	323	49	-	281	19	176	36
1983-4-18	32.32	119.20	2.3	21	75	-	301	6	-	73	1	337	32
1984-10-16	30.48	117.02	2.3	79	75	-	337	5	-	301	36	206	7
1985-5-10	31.60	116.57	3.5	61	7	-	334	7	-	289	7	196	22
1985-5-30	32.75	117.52	2.8	38	8	-	302	75	-	8	25	171	3
1985-9-6	30.90	115.97	3.2	73	7	-	334	6	-	104	36	21	1
1986-7-12	30.82	118.05	2.8	37	75	-	28	6	-	73	6	343	-
1987-10-28	31.63	116.33	3.2	57	6	-	323	7	-	101	22	8	8
1993-8-6	32.35	115.38	3.5	17	45	-	23	5	-	305	3	207	73
1993-10-28	32.45	116.40	2.8	54	5	-	307	7	-	267	44	4	13
1996-10-10	31.42	116.77	2.5	57	7	-	307	45	-	284	49	177	15
1997-8-28	31.28	117.03	2.8	41	6	-	34	5	-	103	7	5.5	43
1998-5-24	31.53	116.25	3.2	41	6	-	296	65	-	257	41	349	4
1999-1-23	30.97	118.42	2.9	5	65	-	305	6	-	88	4	354	4
1999-6-14	30.67	116.70	2.6	49	85	-	312	35	-	288	4	167	31
1999-9-11	31.55	117.42	3.0	21	6	-	278	7	-	238	38	331	6
2001-11-30	33.42	117.15	3.3	46	65	168	140	79	25	270	9	5	25
2001-12-4	32.22	115.42	3.0	52	48	-167	313	80	-42	263	36	9	21
2002-1-28	30.90	117.88	2.6	34	6	-	298	8	-	252	28	349	14
2002-5-3	32.45	118.65	3.2	186	89	-131	94	41	-1	62	33	309	31
2002-7-31	31.92	116.48	3.1	40	65	171	133	81	25	264	11	359	23
2002-8-29	31.42	116.17	3.5	119	64	62	349	37	133	229	14	346	60
2005-2-14	30.34	115.64	3.5	129	54	-31	235	65	-139	95	45	358	7
2005-7-21	32.57	116.78	3.6	212	62	-128	91	45	-40	71	55	328	9
2005-11-26	29.72	115.72	5.7	223	75	144	323	55	18	277	12	177	36
2005-12-3	29.69	115.74	3.5	260	34	90	80	56	90	170	11	350	79
2005-12-19	30.95	117.80	3.0	345	16	94	160	74	88	251	29	69	60
2006-2-6	31.37	116.12	3.1	168	33	20	61	79	121	126	27	3	46
2006-4-5	33.02	115.45	3.0	217	44	156	324	73	48	84	17	193	45

2006-5-17	29.98	116.17	3.3	214	32	-68	8	61	-103	248	71	108	14
2006-7-26	32.54	117.62	4.2	216	86	165	307	75	4	262	7	170	13
2006-8-23	32.85	116.08	3.0	-	-	-	-	-	-	324	81	55	86
2006-9-13	33.60	117.10	2.6	-	-	-	-	-	-	104	36	263	56
2007-7-15	31.23	116.09	2.9	-	-	-	-	-	-	96	3	7	16
2007-7-17	31.23	116.09	2.7	-	-	-	-	-	-	132	15	13	61
2007-7-28	32.00	118.13	2.4	-	-	-	-	-	-	146	5	8	48
2007-10-9	33.34	116.11	2.4	-	-	-	-	-	-	184	32	315	67
2008-2-27	31.29	116.18	2.3	-	-	-	-	-	-	178	85	276	32
2008-4-8	30.37	117.37	2.6	-	-	-	-	-	-	9	83	109	36
2008-5-7	33.17	117.45	3.0	19	63	150	123	63	30	251	0	341	39
2008-6-9	32.27	117.14	2.5	-	-	-	-	-	-	181	77	7	13
2008-9-5	31.08	117.28	2.6	-	-	-	-	-	-	163	76	54	38
2008-9-12	31.38	116.17	2.8	-	-	-	-	-	-	156	44	285	59
2009-1-13	33.32	115.46	2.3	-	-	-	-	-	-	339	79	225	26
2009-2-24	33.31	117.44	2.3	-	-	-	-	-	-	209	65	33	41
2009-2-27	31.18	117.30	2.9	-	-	-	-	-	-	225	5	327	76
2009-3-29	32.47	116.48	3.0	-	-	-	-	-	-	85	64	189	63
2009-4-6	32.00	117.50	3.5	200	84	125	298	35	10	262	30	142	40
2009-5-19	31.40	116.17	3.3	-	-	-	-	-	-	6	74	225	17
2009-5-25	32.53	116.83	3.1	I	-	-	-	-	I	82	54	194	63
2009-8-15	31.38	116.18	3.3	211	88	141	302	51	2	263	24	159	28
2010-1-7	32.52	115.08	3.1	114	60	-36	223	59	-144	78	45	169	0
2010-8-12	32.42	117.45	1.9	-	-	-	-	-	-	122	12	218	27
2010-10-13	31.04	117.35	2.4	-	-	-	-	-	-	72	8	165	23
2010-10-24	34.00	114.60	4.7	143	80	-12	235	78	-169	98	15	189	1
2010-12-20	32.80	117.54	2.3	-	-	-	-	-	-	121	19	18	34
2011-1-19	30.60	117.10	4.8	100	45	-5	193	86	-134	67	33	317	27
2011-3-8	34.00	114.65	4.3	289	52	-12	26	80	-141	254	33	152	18
2011-6-17	30.92	116.92	3.6	322	62	11	226	80	151	277	12	180	26
2011-9-10	29.70	115.40	4.6	304	76	4	213	86	165	259	7	167	12
2012-4-8	33.10	119.10	3.6	96	78	16	2	74	167	228	2	319	19
2013-1-19	34.40	119.80	3.3	321	85	30	228	61	174	91	17	189	24
2013-2-19	31.99	117.49	3.0	129	30	9	32	86	120	96	34	330	42
2013-3-27	32.55	115.17	2.4	308	80	-24	42	66	-169	262	24	357	10

2013-10-14	32.33	114.60	3.0	325	87	-40	57	50	-176	273	30	18	24
2013-11-15	31.39	116.17	2.3	121	61	-28	226	66	-147	85	40	352	3
2013-11-20	31.07	119.55	3.0	303	56	-23	47	71	-144	270	38	172	10
2013-12-24	31.57	116.50	2.9	114	64	24	13	68	152	64	3	332	35
2014-3-16	32.43	117.13	3.0	114	83	-7	205	83	-173	69	10	159	0
2014-3-16	32.43	117.13	2.4	101	65	5	9	86	155	58	14	322	20
2014-3-30	34.02	115.51	2.3	146	66	-7	238	84	-156	105	21	10	12
2014-4-2	32.04	116.88	2.8	140	78	22	46	69	167	272	6	4	24
2014-4-15	32.27	116.14	2.4	94	63	-62	224	38	-133	48	61	164	14
2014-4-20	31.37	116.12	4.3	135	79	-33	232	57	-167	89	31	188	14
2014-07-25	32.00	117.50	3.1	114	67	20	16	71	156	66	3	334	30
2014-8-1	30.10	116.22	3.0	311	66	-18	49	73	-155	272	30	179	5
2014-10-22	31.52	115.52	2.3	127	83	29	33	61	172	257	14	354	26
2014-10-22	31.52	115.52	3.1	125	83	19	33	71	173	258	8	350	18
2014-10-26	31.52	115.52	3.4	129	69	22	31	69	158	260	0	350	30
2014-10-26	31.52	115.51	3.1	127	83	29	33	61	172	257	14	354	26

在表1.4-1中,I节面和II节面的倾角,大于或等于6°的分别占总数的92% 和88%,且大部分大于或等于45,表明断裂面绝大多数倾角较陡。主压 应力轴(P轴)和主张应力轴(T轴)的倾角较小,多数小于45,一般为1°~ 4°,表明区域及邻区地震构造应力处在以水平挤压为主的基本应力状态中, 这些地震是在以水平挤压分量为主的应力场环境下发生的。

区域自1970年以来具有完备的地震观测系统,并积累了大量的地震记录资料,利用地震记录可以反演较大地震的震源机制解。1970—2014年区域内以模拟观测为主,反演震源机制解主要采用垂直向 P/SV 波振幅比结合极性法(梁尚鸿等,1984),也有少部分地震采用极性法,2008年以后区域内全部实现了数字化地震观测,全部采用三分向振幅比结合极性法反演较大地震的震源机制解(Snoke,1984)。

图1.4-3 滑动角统计玫瑰图

图1.4-2为区域及邻区范围内182次 M≥2.0地震震源机制解的节面方位角 统计玫瑰图(归算到270°-90°),节面方位角在北西向和北东向较为集中, 同时也存在部分近东西向的节面方位角,与区域内断裂方向主要为北西向 和北东向,同时存在部分近东西向断裂较为吻合。图1.4-3为区域及邻区范 围内182次 M≥2.0地震震源机制解的滑动角统计玫瑰图,滑动角在-30°—30° 和-150°—150°相对较为集中,说明该区域中小以上地震的震源机制解以走 滑型为主,同时也存在一定数量的斜滑型或逆冲型的发震类型,显示该地 区地震的发震机制较为复杂。

1.5 历史地震对目标区的影响

1.5.1 历史地震概况

分析历史地震对目标区的影响,是地震安全性评价的一项重要工作。 区域及邻区发生过中强地震,应当考虑这些地震对场地的影响烈度值。本 报告根据历史地震资料,分析目标区所遭受的地震影响。

(1)1624年2月江苏扬州 Ms6级地震

南直隶(今江苏、安徽、上海等三省市)、应天(治今南京)、苏州、松江、 凤阳、淮安、扬州等府及滁州、泗州(治今江苏盱眙西北)等处同日地震。 扬州:倒卸城垣380余垛,城铺20余处;倒民间房舍。

上元、江宁(皆今南京)、句容:城垣墙垛倒塌。

镇江、常州:屋瓦摇落,房窗倾斜,多倒塌。镇江平地开裂,缝宽容 拇:常州湖水皆飞。

高淳:屋宇倾,水泛溢。

常熟:崇教兴福寺塔顶欹,城内外地面尽裂。

东台: 王公祠倾颓, 高墙动摇, 河水皆啸。

当涂:墙垣有倾倒,地有折裂。

江苏淮安(淮湖水翻,房动)、六合、无锡、小海(今属大丰)、南通、江 阴、吴江(记作二十四日),太仓、如皋、徐州(以上三地记同年)、靖江、金 坛、丹阳、溧阳,浙江嘉善、嘉兴、崇德、德清、湖州南浔镇、桐乡及乌 青镇、平湖、海盐、海宁州(治盐官)、海盐澉浦、镇海、勤县、宁波(以上 三地记作二日),慈溪(今宁波慈城,记作三年冬),萧山(记同月)、长兴, 安徽铜陵、望江(以上二地记同月)、郎溪(记作三年冬)、五河(记同年)等处 均震。

此次地震震中烈度达WI度,震中距工程场地约41km,波及工程场地达 V度影响(图1.5-1)。

图1.5-1 1624年2月扬州Ms6级地震影响范围示意图 (据江苏省地震局资料改编, 1992)

(2)1668年7月山东郯城~莒县 Ms81/2级地震

该次地震是我国东部地区最大的一次地震,波及鲁、苏、皖、浙、赣、 豫、冀、晋、辽、陕、闽诸省及朝鲜等,50多万平方公里范围内的150多 个州县遭受不同程度的破坏,有感半径800多公里。

极震区破坏烈度达Ⅻ度,极震区内城廓、公廨、官民庐舍、庙宇等一时尽毁,郯城倒塌如平地,莒县百里无存屋,并伴有大规模的山崩地裂、 地陷、涌水喷沙等现象,死亡达5万余人。

此次地震波及到安徽,全省烈度均达到VI度以上,其中,长江以北的 巢湖、六安、阜阳等地区达到VI度,宿县、滁县地区达到VIE度。根据顾功 叙主编的《中国地震目录》,安徽省遭受破坏的地区情况如下:

萧县:民舍楼房崩倒者十之七、八,压死男妇甚众。

砀山: 庐舍倾圯。

- 临淮:倾塌城垣、民舍无数。
- 宿县: 倒坏民房, 伤人无数。
- 灵璧: 城大圮, 坏官民屋舍。
- 蒙城: 城倾, 倒坏民房无数。
- 泗县: 城倾数十丈, 庐舍悉皆崩坏。
- 五河:城南楼关圣庙像俱颓,观音阁亦颓,民居倾圮者无算。
- 合肥: 垣颓屋倒, 处处有之。
- 全椒:城垣倾圮四十余丈。县学正殿两宅圮。
- 和县: 庐舍尽塌。
- 当涂:墙垣多倾倒者,房屋有倾倒者。

该次地震震中距工程场地约为290km,波及工程场地达WI度影响(图 1.5-2)。

(据方仲景等, 1986)

(3)1868年10月定远南Ms51/2级地震

据史书记载,"清同治七年(1868年),农历九月十四日巳时地震,自 西北至东南有声,十五日巳时复震,老人仓墙屋坍塌,压人死。自是屡震 不已,县南数十里尤甚,至次年始息。"

该次地震波及到合肥、霍邱、五河、来安、滁县、全椒、含山、巢县、 贵池、江苏镇江、宿迁等地。震中烈度为Ⅲ度,震中距工程场地约117km, 波及工程场地达Ⅳ度影响(图1.5-3)。

图1.5-3 1868年10月定远南Ms5¹/2级地震等震线图 (据安徽省志 地震志, 1989)

(4)1979年7月江苏溧阳Ms6.0级地震

该地震共倒塌房屋113909间,严重损坏272884间,死亡42人,重伤682 人,轻伤2305人,损坏桥梁11座,小型水库土坝出现裂缝。

距震中较近的安徽郎溪、广德、宣城、泾县、繁昌、芜湖、马鞍山等 地受到V度以上的影响。其中,郎溪县的定蚌、岗南公社距震中仅30公里 左右,部分地区遭受VI度破坏。此次地震的有感面积较大,安徽的蒙城、 霍邱、霍山、安庆以东地区及江南地区均有感。震中距工程场地约138km, 该次地震波及工程场地达IV度影响(图1.5-4)。

(据江苏省地震局)

1.5.2 历史地震对目标区影响烈度分析

表1.5-1给出了目标区所遭受的历史地震影响烈度(≥Ⅳ度)。目标区 宏观影响烈度来自新出版的《中国历史强震目录》(公元前23世纪至1911 年)和《中国近代地震目录》(公元1912年至1990年)。

综合分析历史地震的影响,目标区遭受最大影响烈度为VII度,为1668 年7月山东郯城~莒县 M8¹/2级地震引起的。

地震时间	震中	位置	<u> </u>	震级	最近	影响烈	评定依据			
年月日	北纬()	东经(9	多 巧地点	М	距离(km)	度				
1624-02-10	119.4°	32.4°	江苏扬州	6	41	V	烈度计算			
1668-07-25	118.5°	34.8°	山东郯城~莒县	8 ¹ / ₂	290	VII	烈度图			
1868-10-30	117.8°	32.4°	安徽定远南	5 ¹ / ₂	117	IV	烈度计算			
1979-07-09	119°15′	31°27′	江苏溧阳	6.0	138	IV	烈度图			

表1.5-1 主要历史破坏性地震对目标区的最大影响烈度
1.6 近场区地震活动性

近场区范围内,有文字记载以前共记录到4次M3½级及以上地震(表 1.6-1)。最大地震为1491年9月发生在天长县的M5级地震,该次地震在南 京:屋宇摇动,继而风雨晦冥,雷电大作。扬州淮安二府同日地震。该次 地震距离园区的距离约22km,对场地的影响烈度约为V度。

自1970年安徽省测震台网建立以来,近场区共记录到M≥1.0级地震26次,其中M1.0~1.9级地震10次,M2.0~2.9级地震14次,M≥3.0级地震2次(表1.6-1,图1.6-1)。由图可见,现代地震主要分布在近场区东部,最大地震为发生在天长县城的1970年10月29日发生在天长县城的M4.7级地震,震中距离场地约17km,工程场地处于有感范围内。

位日	地震时间	震中位置		震级
编了	年-月-日	纬度	经度	М
1	1491-09-14	32.70°	119.00°	5
2	1566-05-06	32.80°	119.00°	31/2
3	1585-08-25	32.70°	119.00°	31/2
4	1764-06-16	32.70°	119.00°	31/2
5	1970-10-29	32.90°	119.10°	4.7
6	1972-11-22	33.00°	118.70°	2.8
7	1974-07-09	33.02°	118.80°	2.0
8	1977-04-25	32.77°	119.20°	2.4
9	1977-06-03	32.80°	119.20°	2.4
10	1978-11-01	32.90°	119.15°	20
11	1986-05-31	33.05°	118.82°	1.6
12	1987-10-22	32.83°	119.20°	2.4
13	1988-10-05	33.00°	119.15°	2.6
14	1990-12-20	33.07°	119.18°	1.5
15	1991-01-22	33.07°	118.85°	1.9
16	1992-09-14	32.92°	119.07°	2.4
17	1997-07-24	32.78°	119.17°	2.5
18	1997-11-11	32.88° 118.73°		2.2
19	2001-05-14	32.85° 119.17°		2.5
20	2001-05-14	32.87°	119.18°	1.5
21	2011-05-16	33.08°	118.72°	2.1
22	2011-07-31	32.95°	118.97°	22
23	2011-07-31	32.95°	118.97°	1.9
24	2011-07-31	32.95°	118.97°	2.1
25	2012-04-08	33.10° 119.12°		4.1
26	2012-04-08	33.08°	119.13°	1.5

表1.6-1 近场区地震(M≥1.0)一览表

27	2012-04-08	33.07°	119.15°	1.3
28	2012-07-13	32.71°	119.15°	1.7
29	2012-07-20	32.96°	119.14°	1.2
30	2012-12-03	33.04°	118.81°	1.4

图 1.6-1 近场范围内 M≥1.0级地震震中分布图 (仪器记录地震时间1970年~2020年12月)

1.7 小结

(1)区域范围内共记载M≥4.7级地震55次,其中M≥6级地震7次,5≤M<6级地震30次,4.7≤M<5级地震18次,其中震级最大为M6¹/2级地震区域内的最大地震为1927年发生在黄海海域的M6¹/2级地震,区域范围内2012年7月20日在江苏高邮、宝应交界发生的Ms4.9级地震为区域范围内发生的最近一次破坏性地震。

(2) 区域历史地震活动空间分布不均匀,往往与活动构造密切相关。 工作区中西部为北北东向地震活动带,大体上与郯庐断裂带走向一致,该 断裂带历史上曾发生1668年7月25日郯城M8¹/2级大地震。工作区东部则以 北东向及北西向地震条带活动为主,其中,黄海、茅山东侧断裂带及其附 近地区及昆山附近表现为中强震活动丛集性。区域内的最大地震为1927年 发生在黄海海域的M6¹/2级地震,区域范围内2012年7月20日在江苏高邮、 宝应交界发生的M4.9级地震为区域范围内发生的最近一次破坏性地震。

(3)仪器记录地震与历史中强地震活动的空间分布特征基本一致。工作 区东部地震分布密集,扬州、溧阳、南黄海海域及苏北沿海地区等地小震 分布相对集中;小震活动明显呈条带分布,区域内呈现新沂~宿迁~定 远~庐江和溧阳~扬州~盐城2个近南北向的小震密集带。

(4)区域范围内地震震源深度在25km以内高达95%,其中又以5~19km 范围居多,研究区域所发生的地震绝大部分属于地壳中上层的浅源构造地 震。

(5)区域处于华北地震区的南部,跨越郯庐地震带和长江下游~黄海地 震带,工程场地位于长江下游~黄海地震带内。郯庐地震带和长江下游~ 黄海地震带未来100年地震活动趋势均以该地震带活跃期水平估计为宜。

(6)区域及邻区地震构造应力处在以水平挤压为主,在华北构造块体内,构造应力的主压力方向为北东、北东东;下扬子构造块体的主压应力 方向为南东、南东东。

(7)综合分析历史地震的影响,工程场地遭受最大影响烈度为VII度,为 1668年7月山东郯城~莒县 M8¹/2级地震引起的。

(8)近场区范围内,有文字记载以前共记录到4次M3½级及以上地震,最大地震为1491年9月发生在天长县的M5级地震对场地的影响烈度约为V度。自1970年安徽省测震台网建立以来,近场区共记录到M≥1.0级地震26次,其中M1.0~1.9级地震10次,M2.0~2.9级地震14次,M≥3.0级地震2次,最大地震为发生在天长县城的1970年10月29日发生在天长县城的M4.7级地震,震中距离场地约17km,工程场地处于有感范围内。

33

第二章 区域地震构造环境分析

本章通过对工程研究区域地震构造、新构造运动、地球物理场和地壳 深部结构等方面的分析,结合区域地震活动分布特征,得出区域内中强震 地震地质标志,为合理划分潜在震源区和确定其地震活动性参数提供依据。

2.1 区域地质构造背景

2.1.1 大地构造分区及基本特征

区域位于我国大陆东部,根据《中国及邻区海陆大地构造图》(张文 佑,1983)本区域地跨3个一级大地构造单元(图2.1-1),西北部为华北断 块区,西南部属于秦岭~大别山断褶带,东南大部分属于下扬子断块区。 各构造单元均经历了多个不同的构造演化阶段,其构造格局、结晶基底、 盖层以及地震构造各具特色。现分别简述如下:

图 2.1-1 区域大地构造分区图

(1)华北断块区

华北断块区位于肥西~韩摆渡断裂以北、郯庐断裂带以西地区。在晚 太古代由东部陆块和西部陆块碰撞拼合而成,是我国最古老的古陆。在中、 新元古代形成了以大套浅海相沉积为特点的第一套盖层,其典型代表是蓟 县中上元古代剖面。元古宙广泛裂谷火山岩及岩墙群的存在表明此时华北 板块己属成熟刚性板块(侯贵庭等,1998)。沉积岩系展布及火山岩系性 质显示中、新元古代的华北具有拗拉谷的构造背景。元古宙时的活动带在 古生代时仍为强沉降带,古生代的沉降、沉积中心与元古宙一致。早古生 代为全域同步沉降、稳定的盖层沉降阶段。早古生代华北板块构造运动表 现为大陆板块的连续宽缓的弯曲变形,海洋变化则表现为高频率的小幅震 荡。华北板块晚古生代由于南北向的挤压应力开始占据主导地位,从而导 致华北沉积底界由平坦状向中凹状转变(刘波等,1999)。

侏罗纪~白垩纪期间的中生代断陷作用使华北地区形成一系列断陷 盆地并接受巨厚沉积,并伴有大规模的火山活动。至白垩纪末期,燕山运 动使盆地封闭,并形成北东向展布的挤压褶皱和断裂体系,从而奠定了本 区的基本构造格局。晚白垩纪~第三纪古新世,地壳整体稳定抬升,遭受 长期剥蚀、夷平作用,形成了遍及整个华北地区的北台期夷平面。华北板 块新生代构造演化一般来说主要受印度板块与欧亚板块的碰撞及太平洋 板块向欧亚板块下的俯冲两种远场构造应力影响。自始新世开始,新生代 断陷作用使夷平面开始解体,期间,本区西部与北部为持续上升区;东部 和南部则大规模断陷,经历了始新世初始断陷、渐新世强烈断陷和新近纪 整体沉降三个主要阶段,形成了华北断坳(李三忠等,2004)。到新近纪 的上新世,在山西断隆轴部及于燕山褶皱带毗邻的部分,发育了右旋拉 张~剪切性质的山西断陷带。第四纪,华北断坳总体上继承了新近纪的沉 积格局外,还在其北部发育了一条北西西向德沙河~武清~渤海活动断陷 盆地带。

区内地震活动较为强烈,曾发生1481年3月9日安徽亳州南M6级地震、 1831年9月28号安徽风台东北M6¹/4级地震,另外4、5级地震发生多次。区 域范围内华北断块区,以颖上~定远断裂带为界可划分为江淮台隆(合肥 断坳)(I₁)、淮河台坳(I₂)2个二级构造单元。

①江淮台隆(合肥断坳)(I₁)

由于本单元内中新生界分布广泛,故有人称之为合肥断陷盆地。在中、 新生界之下存在由霍丘群(Ar₃)组成的基底隆起。隆起北侧为典型的"华 北型"地层,南侧是秦岭一大别褶皱系的"槽相"地层,这表明它经历了 新太古代地槽发育阶段后,在元古宙和古生代其主体一直处于古陆状态。 侏罗纪以来转为下沉,接受 2500~6000m 厚的中、新生代沉积。其中早侏 罗世仅发育在六安~合肥断裂和肥西~韩摆渡断裂的狭长地区, 坳陷中心位 于肥西县防虎山附近。晚白垩世晚期~古近纪期间, 肥中深断裂起着明显的 控制作用。在肥中深断裂与肥西~韩摆渡断裂之间, 前期地层发生轻微褶皱, 肥中深断裂之北, 晚白垩世断陷断续向北东方向收缩, 沉积变薄。 古近纪 仅沿北部颖上~定远断裂、郯庐断裂带产生断块下陷, 形成定远、梁园次凹, 表明断陷更加萎缩。此后, 由于早喜马拉雅运动的影响, 全区相继抬升, 遭受剥蚀, 仅在合肥断坳西北角, 形成新近纪颖上凹陷。

②淮河台坳(I₂)

位于两淮地区,东邻郯庐断裂带,北以韩庄等断裂与鲁西台隆相连。五 河群(Ar₃²)和凤阳群(Pt₁)等组成基底,构造线以东西向为主。新元古 代和古生代强烈沉降,盖层发育良好,厚达 7000m 左右。中、新生代断陷 盆地发育,沉积物主要是河湖相碎屑岩和泥岩,早期有火山碎屑岩,侏罗 一白垩系和古近系厚 2000~8000m;新近纪以来整体缓慢沉降,以河湖相 沉积为主的新近系和第四系覆盖全区而成为广阔的平原。

(2)秦岭~大别山断褶带

秦岭~大别山断褶带从早古生代开始发生裂陷和坳陷。在中三叠世末 期的印支运动中,海盆消失,秦岭整体回返隆起。大致以太阳寺~沙沟街~ 商南一线为界,以北为加里东期的褶皱带,以南则为海西~印支期褶皱带。 在燕山运动中以断裂和断块活动为主,形成了一些受断裂控制的窄小盆地。 此外,还有大面积的中酸性岩浆的侵入活动。古近纪特别是中新世以来, 秦岭在大幅度急剧抬升的同时,还表现了向北翘起,向南掀斜的断块山地 活动特征。

秦岭~大别山断褶带经历了长期复杂的地质演化,与山体走向一致的 紧密褶皱带及大断裂带十分发育,并伴有大面积的岩浆侵入活动与复杂的 变质作用,地质构造和地质结构十分复杂。是我国东部地区一条明显的南 北地理分界线。北西向和北西西向断裂规模大,切割深,活动时间长,但 第四纪以来活动不明显。北北东向断裂虽然规模小,却往往是第四纪断裂。 秦岭~大别山断褶带也是一个低强、低频的弱震带,5 级以上地震受第四 纪活动断裂控制较明显。

区内曾发生2次6级以上地震,分别为区域内最大地震1917年1月24号 安徽霍山M6¹/4级地震、1652年3月23日安徽霍山东北M6级地震。另外,4、 5级地震也发生多次。区域范围内以青山~晓天断裂为界为北淮阳褶皱带 (II₁)和大别山中间隆起(II₂)。

①北淮阳褶皱带(II1)

位于大别山北麓与江淮丘陵南部,包括了六安、肥西两县的大部和霍

丘、金寨、霍山、舒城等县的部分地区,其南、北分别被青山~晓天断裂 和肥西~韩摆渡断裂所限制。北淮阳地槽褶皱带由于经受了多次构造变动 的强烈改造,褶皱、断裂都十分发育,呈近东西向。由于青山~晓天断裂 等多条东西向深、大断裂的作用,动力变质带发育。该带可分为金寨~霍 山复向斜和舒城隆起两个三级构造单元。

②大别山中间隆起(Ⅱ2)

大别山中间隆起原是华北地台基底的组成部分。中—新元古代华北地 台南部裂离解体,大别地块最初被分裂出来,并逐渐发育成秦岭洋,此后 在长期不均衡多旋回的演化过程中,经历晋宁、加里东、华力西和印支运 动的重要构造转折,各部分陆续褶皱回返,发育了一系列褶皱和复式背斜, 大别山台隆作为整个东西向造山带的一部分也应运而生。

大别山台隆为秦岭~大别山断褶带的主体,山脉西部呈东西向,东部 转为北东向,总体呈弧状构造。由变质的大别群、桐柏群和卢镇关群火山 岩系、碎屑岩系组成。中、新生代遭受多次构造运动改造、挤压隆起使上 覆地层剥蚀始尽,前震旦纪地层大片出露。

(3)下扬子断块区

下扬子断块区位于区域东部,西北以淮阴~响水口断裂、郯庐断裂为 界与秦岭~大别山断褶带、华北断块区相接。基底由张八岭群组成,为一 套浅变质的绿片岩相岩类,绝对年龄为 8.04~10.31 亿年。下扬子断块区在 晚元古代完成了基底发育历史,震旦纪进入盖层沉积阶段。盖层地层发育 齐全,厚度大。震旦纪至三叠纪以碳酸盐、碎屑岩建造为主,各套地层间 多以整合或假整合接触,反映了下扬子断块区在此期间以震荡升降运动为 主。印支运动使本区形成了变形强烈的褶皱带,并伴有断裂和岩浆活动, 褶皱轴向及断裂走向均以北东向为主,燕山运动则以剧烈的断裂活动为主, 并伴有强烈的岩浆活动,形成一系列的规模不等的断陷盆地。白垩纪和古 近纪时期,盆地内接受了巨厚沉积,并伴有火山喷溢,新生代晚期,在不 均一的、间歇性的升降运动过程中,在抬升山区广泛发育了多级夷平面和 河流阶地;在沉降的平原地区,沉降速度减缓,盆地由原来的断陷型转化 为坳陷型;在抬升山地和沉降平原的过渡地带,沿着某些基底断裂发育了 一些新近纪~第四纪的凹陷,发育了陆相碎屑岩夹玄武岩的沉积建造。

本区内发生过2次6级以上地震,分别为1624年扬州6级地震和1979年 溧阳6级地震。区域内下扬子断块区可分为胶南~威海造山带(III₁)、苏北~ 南黄海断坳(III₂)、下扬子台坳(III₃)、钱塘台褶带(III₄)4个二级构造 单元。

①胶南~威海造山带(Ⅲ1)

胶南~威海造山带西邻郯庐断裂带,东南边与下扬子断块区相接。该 褶皱带主要由胶南群(Ar₃²)和五莲群(Pt₁¹)或东海群(Pt₁)等变质杂岩 组成。在这古老的变质岩系中,产有大小不等的似层状、条带状、透镜状 等的榴辉岩和橄榄岩岩体,组成北东一南北走向的榴辉岩带。榴辉岩成岩 时代为印支运动时期(221MaB.P.)(葛宁洁等,1992)。对榴辉岩的矿物 组成、化学成分和野外产状研究表明,它们属于基性和超基性岩范畴,生 成于地壳深部或地幔,印支末期一燕山早期经过复杂的挤压推覆和上隆作 用,被侵位于变质围岩的褶皱之中,并被携带到地壳浅层。

由于组成胶南~威海造山带的变质杂岩在岩石组成、变质作用和变质 时代上与秦岭-大别褶皱系可以对比,它们都普遍遭受到印支期高压变质 事件的改造,且榴辉岩的成岩时代一致,故认为胶南~威海造山带和秦 岭~大别山断褶带是在印支运动使秦岭-胶苏一带地槽全面褶皱回返并 拼接扬子和华北地台的过程中形成的同一褶皱带。后因郯庐断裂带左旋平 移活动而被错开为东西两部分。

②苏北~南黄海断坳(Ⅲ2)

苏北盆地和南黄海盆地是新生代裂陷过程中成因上紧密相关的两个 盆地,可称苏北~南黄海裂陷盆地。盆地的北界是淮阴~响水口断裂。苏 北盆地分盐阜坳陷和东台坳陷及两坳之间的建湖隆起。盆地构造发育已经 历了晚白垩世~古近纪裂陷(断陷)和新近纪以来后裂陷(坳陷)两个主 要阶段。

该区在强烈的区域 NW—SE 向拉张作用下,形成一系列由 NE 至 NEE 向正断裂控制的断陷盆地(凹陷),如盐城凹陷、高邮凹陷等。它们多为 南断北超的半地堑,往往成带分布,相应组成 NEE 向展布的盐阜坳陷和东 台坳陷。坳陷间是建湖隆起,总体呈坳隆相间、多凹多凸的复式盆—岭构 造系统。凹陷中堆积以河相和河湖相沉积,古近系一般厚 2000~4000m。 古近纪末期的三垛运动,使盆地挤压抬升而被剥蚀夷平。新近纪起盆地区 整体下沉,广泛充填和被覆以河湖相为主的新近系,第四纪海水入侵,沉 积了河湖相、海陆交互相和滨海相地层,新近系和第四系厚一般 1000~ 1200m,最厚 1800m 左右。

③下扬子台坳(Ⅲ3)

下扬子台坳的基底由上元古界张八岭群组成,沉积盖层十分发育,形成了巨厚的沉积建造,沉积盖层以角度不整合覆盖于基底之上,显示出区域经历了多次显著的水平挤压运动及伴随的升降运动。区域在基底形成之后,自震旦纪到中三叠世基本处于陆缘海和陆表海的地质环境,接受了陆源碎屑岩和碳酸盐岩的地台型沉积。它大致可分上下两套,下部是震旦系

一志留系,最大厚近万米;上部为泥盆系一中三叠统,厚 2000m 左右。末期的印支运动将地层强烈挤压褶皱而形成了台褶带的雏形,褶皱轴及断裂均以 NE 向为主。此外,印支运动的作用也使该区域逐渐抬升成陆。燕山期 NW—SE 向拉张—挤压作用交替出现,以伸展型差异构造运动为主,断裂活动持续而强烈,形成了一系列规模不等的张性断陷盆地,接受以河湖相为主的的沉积,早期还有火山碎屑岩;挤压使盆地构造反转,发生大规模逆掩和逆冲,台褶带最终形成,同时伴有强烈的中酸性岩浆活动。喜马拉雅期又被强烈拉张改造,在台褶带之上发育了一系列北东向断陷盆地。随着区域新构造运动的发展和变化,新近纪以来,盆地虽继续扩大,但沉降速率也迅速减慢,盆地生长发育的类型也由原来的断陷型转为坳陷型。

④钱塘台褶带(Ⅲ4)

该台褶带基底由上元古界张八岭群组成,沉积盖层十分发育,形成了 巨厚的沉积建造,沉积盖层以角度不整合覆盖于基底之上,显示出区域经 历了多次显著的水平挤压运动及伴随的升降运动。区域在基底形成之后, 自震旦纪到中三叠世基本处于陆缘海和陆表海的地质环境,接受了陆源碎 屑岩和碳酸盐岩的地台型沉积。它大致可分上下两套,下部是震旦系一志 留系,最大厚近万米;上部为泥盆系一中三叠统,厚 2000m 左右。末期的 印支运动将地层强烈挤压褶皱而形成了台褶带的雏形,褶皱轴及断裂均以 NE 向为主。此外,印支运动的作用也使该区域逐渐抬升成陆。燕山期 NW-SE 向拉张一挤压作用交替出现,以伸展型差异构造运动为主,断裂活动持 续而强烈,形成了一系列规模不等的张性断陷盆地,接受以河湖相为主的 的沉积,早期还有火山碎屑岩;挤压使盆地构造反转,发生大规模逆掩和 逆冲,台褶带最终形成,同时伴有强烈的中酸性岩浆活动。喜马拉雅期又 被强烈拉张改造,在台褶带之上发育了一系列北东向断陷盆地。随着区域 新构造运动的发展和变化,新近纪以来,盆地虽继续扩大,但沉降速率也 迅速减慢,盆地生长发育的类型也由原来的断陷型转为坳陷型。

2.1.2 地质构造演化概况

区域范围内华北断块区、下扬子断块区、秦岭~大别山断褶带在印支 运动前后具有不同的演化历史。

华北断块区的结晶基底最终形成于古元古代末期的吕梁(凤阳)运动。 中—新元古代于地台南缘发育古裂谷并逐渐扩展成秦岭地槽,其中的大别 山台隆是从华北断块区裂离出来的构造块体。下扬子断块区的结晶基底是 新元古代中期的晋宁运动形成的。两台地之间的秦岭地槽由北向南先后经 加里东运动和华力西运动相继褶皱回返,三叠纪晚期的印支运动使南秦岭 残留洋盆封闭,全面褶皱形成秦岭~大别山断褶带,并将南北两边的地台 连接成中国东部大陆的主体部分。此后,进入板块构造体制的活动大陆边 缘构造发育的新阶段。

燕山期经历了中生代裂陷运动以及其间几次构造反转作用的改造,而 郯庐断裂带在侏罗纪和白垩纪时受一次次的 SE—NW 向挤压作用,由前期 形成的左行韧性剪切带发育成为左旋平移性质的脆性破裂带。郯庐断裂带 的长期左旋运动,将原为秦岭~大别山断褶带东端组成部分的胶苏褶皱带 和下扬子断块区的有关的一部分沿北东方向大致错动到现今的位置。

喜马拉雅期,新生代裂陷作用产生了一些断陷和盆地,其中以苏北— 南黄海裂陷盆地规模最大,但它早已结束了古近纪强烈断陷的历史而进入 了新近纪以来整体缓慢沉降的后裂陷阶段。

总的来说,区域涉及华北断块区、秦岭~大别山断褶带和下扬子断块 区的有关部分,它们具有长期而复杂的发育历史,地质构造比较复杂,但 地台具有古老的结晶基底,褶皱带主要形成于古生代,后经多期构造运动 的改造,地壳刚性程度都较高。

2.2 区域新构造运动分区及特征

2.2.1 区域及邻区地貌特征

区域及邻区平原、山地、丘陵俱全,河流和湖泊交错。大致以郯庐断 裂带分为东、西两大地貌单元。流经区内的河流主要有淮河和长江。

西部从北向南依次分布着黄淮平原、淮北平原、江淮丘陵、大别山地、 长江谷地。黄淮平原,属华北平原南部,海拔高 100m 以下,略向东南倾 斜。淮北平原是华北平原的一部分,海拔 20~40m,地面平坦,微向东、 东南倾斜。江淮丘陵,北部、东部、南部为低山丘陵区,其他广大地区为 岗坳相间的波状平原。仅在一些大河流两侧发育较宽阔的河谷平原。江淮 分水岭沿六安、吴山庙、章广一线通过,海拔高达 80~90m,构成淮河和 长江流域的分水岭。北部的淮南~风阳山低山丘陵,海拔高大部分在50~ 200m, 最高峰狼窝山为 340m, 发育海拔高 200m 的Ⅲ级(淮南期)夷平面。 波状平原海拔高一般在 40m 以下,从江淮分水岭分别向西北和东南两侧倾 斜,其东南侧残留白垩系、侏罗系岗丘,合肥蜀山最高,海拔 282m。大别 山地为中、低山区,山地中心一带峰顶海拔在 1000m 以上,天堂寨 1729m, 东南麓被断层切割,下降盘的丘陵海拔高度降至 300~100m,大别山南麓 的丘陵逐渐向长江谷地降低成为长江北岸阶地。山地主要发育三级夷平面, I级夷平面(大别山期),主要分布在山地中心一带,海拔高在 1200~1600m 以上,Ⅱ级夷平面(霍山期)海拔高 600~800m,Ⅲ级夷平面(淮南期)海

拔高 400m(图 2.2-1)。长江谷地,在黄石~广济段为峡谷段,广济~安 庆段为宽谷段,发育阶地,冲积平原和湖泊。阶地分四级,T1 高 10~14m, 由上更新统组成:T2 阶地高 20~30m,由中更新统组成;T3 高 40~50m 由早更新世或中更新初期的砂砾石层组成;T4 高 60~80m,为侵蚀阶地, 仅局部见到早更新世的河流相堆积。阶地与河漫滩之间湖泊成群,主要是 长江洪水时的过水湖和构造湖。

郯庐断裂带以东,北部为苏北平原,中部为下扬子盆岭带。苏北平原属黄淮冲积平原和冲积、湖积平原。在黄海西岸附近地面海拔为 2~4m,向西逐渐增高。平原内部地势平坦,河渠纵横,并分布洪泽湖等大型湖泊。 下扬子盆岭带,总体呈北东、北东东向,为系列条状隆起和盆地相间组成的岭谷地貌,条状隆起表现为低山丘陵地貌,峰顶海拔高 200~400m,个别高达 600m 以上。盆地主要表现为平原、低丘地貌,沿长江形成长江河谷平原,地面标高 8~20m,多湖泊、水网密布。九华山、黄山山地,大部分海拔在 200~600m,黄山、九华山等高峰耸立,黄山主峰光明顶海拔1840m,九华山牯牛降海拔 1727m。主要发育海拔高 1000~1400m I 级夷平面和 600~800mII级夷平面及 400mIII级夷平面。

图 2.2-1 区域地形地貌剖面

2.2.2 区域新构造运动分区

区域分属华北断块区和华南断块区。根据新构造运动方式、性质和幅度的差异及其造成的新构造变形特征以及地貌形态、地震活动的差异,将区域划分为2个一级新构造分区,8个二级新构造分区(表 2.2-1、图 2.2-2)。

一级区		二级区	
编号	名称	编号	名称
Ι	华北新构造区	I_1	鲁西~皖北断块隆起区
		I ₂	合肥盆地断坳区
		I ₃	鲁东断块隆起区
		I4	郑庐断裂带活动区
Π	华南新构造区	II_{1}	大别山断块隆起区
		II ₂	苏北~南黄海盆地断坳区
		II_3	下扬子隆陷带
		II4	长江三角洲沉降区

表 2.2-1 区域新构造区分表

图 2.2-2 区域新构造分区图

(1)华北新构造区(I)

①鲁西~皖北断块隆起区(I1)

该区位于区外齐河~广饶断裂以南,西以聊城~兰考断裂、阜阳~凤

台断裂为界,东以郑庐断裂带为界,南为颍上~定远断裂。新生代以来基本以整体间歇性抬升为特征,它们的北面、西面边缘地带,在新近纪以来 倾覆于黄淮平原之下。隆起中心位于区外鲁西的泰山、蒙山地区,高峰达 千米以上,地势向四周降低。区域仅包括该断块隆起的南段,根据构造演 化、升降幅度可进一步划分出淮北断陷和蚌埠弱断隆 2 个三级区。淮北断 陷,北邻徐淮弱断隆,南以怀远断裂为界。为平原地貌,分布基岩残丘。 古近纪时期主要受近东西向断裂控制,发育宿州、新集、陈集断陷或坳陷。 新近纪以来本区整体下沉,并形成固镇~泗县、大庄、宿州等沉降中心, 堆积了厚 300~400m的新近纪一第四系。蚌埠弱断隆,位于淮北断陷以南, 南界为颍上~定远断裂。该隆起自中生代以来即为隆起状态,但隆起和缓, 海拔高一般在 50~200m,高峰狼窝山达 340m,发育海拔高 200m 以下淮 南期夷平面和 50~80m 的台地或高阶地。区内地震活动较强,历史上发生 过多次中强地震。

②合肥盆地断坳区(I₂)

位于蚌埠隆起和大别山隆起之间,地貌上为江淮丘陵主题所在。是中 生代为主的中、新生代沉降区。受近东西向断裂控制,从北向南形成肥北 断陷和肥南断陷,肥南断陷又可划分为肥中断凹、六安断凸和舒城断凹。 白垩系在盆地东北部发育全、厚度大。古近系仅在舒城、肥北断陷的定远 断凹和肥中断陷的北东向梁园小凹有沉积,其中舒城断陷厚达1800m以上。 新近纪时期合肥盆地普遍抬升,仅在颍上、寿县地区有百多米厚新近纪沉 积。早、中更新世基本继承了新近纪时期的特征。晚更新世普遍接受10~ 20m 厚的沉积,最后可达30m。晚更新世末,沿六安、吴山庙、章广一线 发生拱曲隆起,迫使全新世湖相沉积局限在合肥盆地西北隅、东南巢湖和 三河地区。

③鲁东断块隆起区(I₃)

为新生代以来抬升区,但在构造演化、运动方式、抬升幅度有差异, 区域仅涉及到该区南部的三级构造单元灌云~千里岩斜坡沉降带。该沉降 带古近纪基本处于隆升,局部发育小而浅的凹陷。新近纪以来受南黄海~ 苏北盆地持续沉降和扩展,逐渐沦为下沉,沉积了厚数百米的新近系~第 四系。

④郯庐断裂带活动区(I4)

郯庐断裂带南段,新生代以来为由东、西两边四支断裂组成的堑、垒构造,其内部又受近东西向断裂控制,发育莱州湾、莱北等凹陷,其中莱州湾凹陷古近系厚达 5000 多米,新近系和第四系厚为 2000m。展布在山东陆域部分的郯庐断裂带,称沂沭断裂带。中生代为由四条断裂构成的两堑

夹一垒构造,新构造时期以来,仍呈现中间隆起、两侧低洼的狭长构造地 貌形态。地垒隆起主要由变质岩组成,最高山体海拔 428m。沿地堑发育沂 河和沭河河谷,区内谷地北部海拔高 100 多米,向南降为数十米。沿东地 堑受安丘-莒县断裂和白芬子-浮莱山断裂控制形成白垩系组成的长条 丘状岗地地貌,纵向上又被一系列北西向断裂分割呈现一系列晚第四纪盆 地和长条状断块基岩隆起相间分布。晚第四纪以来,以断裂的右旋水平走 滑运动为特征。

郯庐断裂带晚第四纪强烈活动的倾滑走滑段,在其与近东西向和北西向断裂交汇处是大震发生地带。如山东安丘公元前 70 年 7 级地震和郯城 1668 年 8½级地震。

(2) 华南新构造区(II)

①大别山断块隆起区(Ⅱ1)

该区主体为桐柏山和大别山,长期处于隆起状态。区域内主要为东大 别山断隆,以中、低山地貌为主。逾千米的峰顶都位于大别山东段,最高 峰白马尖海拔高 1774m。东大别山发育三级夷平面,I级夷平面海拔高 1200~1600m以上。II级(霍山期)海拔高 600~800m,III级夷平面(淮南 期)海拔高 400m。由地形高度、夷平面的分布和高度,显示断块拱曲隆升 的特点,并呈北陡南缓的非对称的拱曲形态。该区主要发育北东向、北西 向以及近东西向断裂,尤其北东向霍山区域内的落儿岭~土地岭断裂第四 纪以来活动强烈,沿断裂历史上发生过多次中强地震,最大为 1917 年 6¹/4 级。

②苏北~南黄海盆地断坳区(Ⅱ2)

位于北东向淮阴~响水口断裂以南。该断坳区根据构造可划分为苏北 断陷、南黄海北部断陷、南黄海中部断隆和南黄海南部断隆。区域仅涉及 苏北断陷,为中生代~新生代继承性沉降区,古近纪基本是迭合在中生界 之上的断陷沉积,其中高邮凹陷厚达 5400m。新近纪以来为广盆坳陷型沉 积,沉降中心有自西向东迁移的特点,新近系和第四系最大厚度为 2300m。 苏北盆地主要受北东向断裂控制,可划分为北部盐阜断陷、中部建湖隆起 和南部东台断陷。

③下扬子隆陷带(Ⅱ3)

该隆陷带由受断裂控制的系列条状隆起和盆地相间组成。隆起山地为 丘陵地貌,海拔高一般在 50~200m,少数丘顶在 400m 以上,个别逾 600m。 盆地由西向东依次有潜山~来安盆地带,望江~宁芜盆地带(沿江盆地带)、 南陵~句容盆地带、宣城~陵口盆地等。盆地为中、新生代沉积,同一盆 地有多个沉降中心,新近系沉积普遍缺失或厚度较小。第四系在沿江盆地 较厚,大多在 20~50m,其中无为盆地厚 200m 的沉降中心部位,据钻孔 资料,新近系厚度 120m,第四系厚 80m。南陵、句容、潜江等盆地在白垩 纪或古近纪就已结束盆地沉积历史,仅在盆地表面有薄的第四系。长江沿 望江~宁芜盆地带流过,形成较开阔的河谷平原地貌,且发育 4~5 级阶 地。

⑤长江三角洲沉降区(Ⅱ4)

本区上新世以来表现新生扩展性,为苏北和南黄海盆地沉降范围不断 向南、向西扩展的超覆地区。第四纪时期它以不均匀下沉为特征,同时海 水进退频繁,形成冲积夹湖积、海相沉降。沉积厚度受古构造制约,厚度 不等,第四系一般为100-200m。区内历史上发生过一些5级左右的地震。

2.2.3 区域新构造特征

区域分属华北新构造区东南部和华南新构造区的东北部,新构造运动 较强烈,以大面积间歇性升降、断块差异运动和断块活动为特征。

由前述新构造分区及特征表明,本区新构造运动具继承性和新生性, 时间上具阶段性,空间上具差异性、掀斜性。

①大面积、整体性间歇性抬升

区内山地,新生代以来发生大面积间歇性抬升,出现多层地貌结构, 主要发育三级夷平面和 3~5 级阶地或相当的台地。如大别山地区白垩纪 晚期至古近纪初形成的大别山夷平面,海拔高达 1200~1400m 以上,渐新 世末形成的霍山期夷平面海拔高 600~800m,新近纪末形成的淮南期夷平 面海拔高 400m。而盆地如苏北盆地发生强烈的沉降,并形成渐新统与中新 统之间的沉积不连续面,断陷和盆地沉积并具多次沉积旋回和多期堆积特 点。上述表明,本区具多次的间歇性的升、降运动。

②继承性和新生性

新构造运动不同程度继承了先存构造格局和运动方式。在喜山运动分 异基础上,在新构造时期,尤其第三纪以来隆起区继续隆起,沉降区再度 沉降。如先前隆起的大别山、黄山等构造时期仍然抬升。苏北盆地新构造 时期继续沉降。

断裂和断块活动还显出新生性,即新构造运动在时间、空间上改变了 原有断块、断裂的运动方式和强度。郯庐断裂带沂沭段,在中生代即有数 百公里的左旋走滑,也有过近万年的地堑张裂,后经强烈的挤压,在晚第 四纪以来,沂沭段表现了右旋逆倾滑活动。第四纪时期,明光~广济段主 要为倾滑活动。合肥盆地早、中更新世继承了新近纪时期的特征,主要分 布在颍上~寿县地区,而晚更新世普遍沉降,一般厚 10~20m,局部地区 可达 30m。晚更新世末沿六安、吴山庙、章广一线发生拱起隆起,形成新 江淮分水岭。又如,合肥盆地南部的舒城断陷古近纪沉降,新构造时期以 来反转抬升。再如长江下游的望江盆地,白垩纪、古近纪为断陷下降,新 近纪主要处于抬升,第四纪又反转下沉。

③差异性和掀斜性

区内根据山地高程、夷平面高度和盆地沉积厚度资料,表明各块体升降幅度有较大差异,同时显示掀斜特征。如大别山地 II 级霍山期夷平面海拔高 600~800m,III 级淮南期夷平面为 400m;淮南~风阳丘陵山地 II 级霍山期夷平面海拔在 300m 以上,III 级淮南期夷平面在 200m 以下。在新生代隆起背景上,大别山隆起还显示由隆起中心向南、北倾斜;皖南黄山隆起向北、向南掀斜;幕阜山隆起向北掀斜。盆地中如苏北盆地,断层的正倾滑严格控制块体的掀斜运动,在断裂下降盘一侧形成掀斜的断陷,上盘一侧形成翘起的断隆。

此外,新构造期以来,由较强烈的玄武岩流的喷溢,主要分布在苏皖交 界的明光、盱眙、六合、仪征一带,空间上受北西向和北东向两组断裂的 控制,属裂隙~中心式喷溢类型。活动时代为中新世和上新世~早更新世。

2.2.4 区域现今地壳形变特征

(1)区域垂直形变特征

大面积的高精度水准测量是以"场"的概念给出高分辨率区域地壳垂 直运动图像的最有效方法。从黄立人等绘制的区域及邻区相应的地壳垂直 运动速率等值线图中可以看出(图2.2-3),区域及邻区地壳垂直形变的总 趋势是南部地壳垂直运动速率较高于北部区域。

通过对郯庐断裂带南段、大别山隆起内的霍山~罗田断裂带断裂以及 茅山断裂带进行了跨断层水准测量,测量结果表明,近20年来郯庐断裂带 南段的年垂直运动速率很小,年变化速率绝大部分小于1mm/a;霍山断裂 年垂直运动速率也很小,年变化速率均在1mm/a之内;茅山断裂带的年垂 直运动速率同样较小,年变化速率绝大部分在1mm/a范围内。跨断层水准 测量资料表明该时期内区域及邻区断裂带的活动很弱。

(2)区域水平形变特征

本研究利用中国地壳运动观测网络1999~2004年施测的GPS复测资料, 在欧亚参考框架下解算出GPS水平运动速率。区域及邻区范围内GPS测点 分布不均匀,华北活动地块内,尤其是郯庐断裂带两侧GPS测点分布较密, 华南活动地块内GPS测点分布较少。资料显示,区域范围内除个别测点外, GPS给出的水平运动方向基本一致,为S45~50 °E;运动速率也无明显差异, 为5~8mm/a; 无明显趋势性改变和分区性或阶跃性的运动图像,即区内各 点之间的相对差异运动微弱,呈整体性运动特征。由此可以认为,区域范 围内是相对稳定的,属整体性稳态运动区(中国地壳网络观测中心,2005)。 但是,GPS测量资料反映的平面变形并不能很清楚地反映主要断裂带的运 动特征,因此,用垂直断裂带方向GPS测点剖面来反映其现今运动特征。 其中垂直剖面的速度分量反映走滑运动特征,平行剖面的速度分量反映倾 滑运动特征,两侧地块之间的差异运动代表运动特征。

在区内选择了沿 115°方向从徐州到淮阴横穿郯庐断裂带中段和 106°方向从阜阳到马鞍山横穿郯庐断裂带南段的 2条剖面(图 2.2-4)。结果显示,中段与华北平原块体为右旋拉张运动(拉张速率 3mm/a±,走滑速率

0.6mm/a±),与鲁东~黄海块体为左旋挤压运动(挤压速率 3mm/a±,走滑速率 0.6mm/a±),郯庐断裂带两侧运动差异很小;南段与华北平原块体为 左旋拉张运动(拉张速率 1mm/a±,走滑速率 1mm/a±),与鲁东~黄海块 体为右旋挤压运动(挤压速率 1mm/a±,走滑速率 0.6mm/a±),郯庐断裂 带两侧运动差异也很小。因此,区域范围内郯庐断裂带现今活动强度较弱 (唐方头, 2003)。

综上所述,区域现今地壳运动主要表现为总体缓慢抬升和下降的运动 图像,而水平差异运动较弱。

图 2.2-4 横穿郯庐断裂带中段和南段剖面

2.3 区域地球物理场与地壳结构

地震的孕育和发生是由很多因素决定的,而地壳厚度的变化和莫霍面 上拱区以及莫霍面等值线突然转折的部位,都是构造应力容易积累的场所, 当应力积累达到一定程度时,将可能沿着地壳薄弱地带释放能量进而导致 地震的发生。地壳深部构造研究结果表明,区域存在着重力异常梯级带和 航磁正负异常带,反映了地壳厚度的变化和深部构造的特点。

2.3.1 区域重力场特征

研究表明,区域存在着重力异常梯级带和航磁正负异常带。区域重力场展布方向以北东、北北东向为主,东西、北西向次之,区域以正异常为主,仅合肥-舒城一带为负异常,重力异常总的变化趋势是山区低,平原区高,反映区域重力异常值与地势存在着较好的反向对应关系(图2.3-1)。

图 2.3-1 区域及邻区布格重力异常图

在区域重力异常等值线图上,仅西南区域布格重力场为负值,其余大部分区域布格重力场以正值为主。区域西南部大致以舒城为中心形成了一个明显的重力低值区,以合肥一肥西一庐江一线构成弧形的封闭式急剧变化区。布格重力异常的这一特征与下地壳界面的起伏有关,反映区域大地构造单元的分布范围,也反映了区域地质构造线的方向。

2.3.2 区域磁场特征

区域磁异常展布方向主要是北东、北北东向,其次是北东东、东西和 北东向,磁异常场呈高低相间分布,有时呈平缓变化,有时呈剧烈跳跃, 表现出本区深部基底岩相构造和区域断裂构造的复杂性(图2.3-2)。区域航 磁ΔT异常图表明,上层地壳磁性结构很不均一。当区域航磁ΔT上延10km时, 磁场变化剧烈,局部异常多,磁性体特征走向变化较为复杂。深部磁性体 结构比较简单,反映在区域航磁ΔT上延40km时,磁性异常比较平缓,走向 不明显。

区域内多数地震发生在陆壳中部花岗质岩层与变质岩层所构成的蕴 震层内,震源深度一般为5~19km,从震源深度分布看,小震主要集中于磁 性界面以上,而中强地震(M≥5.0)则主要集中于磁构造层中,且靠近磁性 层上界面。可见区域中强震与小震在深度分布上存在着明显差异,表明其 震源相对集中在不同构造层。

根据区域磁场空间展布、异常形态及幅值大小等特点,可将区域内磁场分为以下四类:

(1)无一定走向的区域性高磁异常群:如大别山区的磁异常,反映了具 不均匀磁性的变质岩类,各类侵入体及地形起伏等因素的综合影响。

(2)具明显走向的带状磁异常:北东向怀宁~枞阳及芜湖~马鞍山一带的磁异常,主要与侵入岩和火山岩有关。

(3)局部孤立的等轴状磁异常:如庐江沙溪等地异常,强度一般可达上 千γ,并有明显的负值伴生,一般为中一基性侵入岩引起。

(4)高低相间的杂乱磁异常:异常强弱悬殊较大,分布不规则,正负伴 生关系不明显,一般与受深断裂控制的玄武岩等有关。

50

图 2.3-2 区域航磁异常△Ta 分布图

2.3.3 区域地壳厚度

地壳厚度的变异带和莫霍面上拱区以及莫霍面等值线突然转折的部位都是构造应力容易积累的场所。有的断裂长期以来处于活动状态,当应积累达到一定程度时,将可能沿着地壳薄弱地带释放能量进而导致地震的发主。1668年郯城~莒县M8¹/2级地震震中区的地壳厚度为25km, 1932年麻城M6级地震和1917年霍山M6¹/4级地震发生在莫霍面的"斜坡"部位。地震震源深度参数表明,本区地震都属浅源地震的范畴,几乎全部发生在地壳范围内,其中大部分又发生在地壳中部以上。根据重力资料,利用反演计算得出了本区地壳深部构造轮廓及其厚度变化特征,地壳厚度大致在35~39km。

图 2.3-3 区域地壳厚度等值线图 (据马杏垣等资料改编,中国岩石圈动力学地图集,1989)

从图2.3-3中可看出,西北和西南较厚,沿海地区较薄。地壳厚度最小 处位于区域东部,最厚处位于区域西南部地区。区域西南部存在莫霍面凹 陷,莫霍面凹陷与隆起之间是莫霍面变异带;莫霍面不同程度的拱起之间 为莫霍面斜坡带。变异带反映切割地壳深度较大,时期较早而燕山期以来 又多次强烈活动的深断裂;莫霍面斜坡则反映燕山旋回以来(尤其是喜山 期)的深断裂,如郯庐断裂带等。

根据区域地震活动空间分布特征看,地震发生部位与地壳厚度分布特 征有良好的对应关系。中、强震往往发生在上地幔隆起带和地壳厚度梯度 带,大震往往发生在上地幔隆起的翼部或转折部位。

2.4 区域主要断裂及其活动性

区域范围内断裂构造发育,主要断裂有28条,不同地区断裂分布格局

不同(附图 I)。以郯庐断裂带为界,其西地区断裂以北西西向、近东西向 为主,其次为北东走向;其东地区以北东走向为主,其次有北北东、北东 东走向断裂。现将本区第四纪以来有活动的主要断裂及其活动性分别叙述 如下。

2.4.1 北东向、北北东向断裂

(1) 郯庐断裂带(附图 I 中断裂编号 F8-1 至 F8-4, 以下同)

该断裂带分布于我国东部,北起中俄边境的黑龙江鹤岗市、萝北一带, 沿北北东~北东向往南直至长江岸边的湖北广济。它是一条规模巨大的岩 石圈断裂带,为不同构造单元的分界线,控制了两侧地震地质环境的差异 性发展,第四纪以来,具有多期及分段活动的特征。根据所切穿的不同构 造单元可分三段,即从黑龙江畔到辽宁昌图(华北断块区的北边界)为北 段;昌图往南至淮河南岸(华北断块区南边界)为中段,由4-5条主断裂构 成宽达20-60km的中、新生代地堑地垒式的复杂断裂带;淮河南岸至湖北广 济为南段,主要是郯庐断裂带东界主断裂向西南的延伸,在广济附近与北 向向的襄樊-广济断裂相交汇。本项目区域涉及的断裂为中段和南段的交汇 部位,仅宿迁以北表现为5支外,其余表现为4支。从西向东依次为乌云山 -合肥断裂(F8-1)、秦涧子-广寒桥断裂(F8-2)、池河-西山驿断裂(F8-3)和藕塘-清水涧断裂(F8-4)。其中池河-西山驿断裂(F8-3)的活动性 最强,具体描述如下。

乌云山-合肥断裂(F8-1)

该断裂为郯庐西界断裂,其定远以北段落在宏观地貌上有显示,构成 山体与西侧平原的分界;定远以南断裂基本隐伏于合肥盆地之下。在该断 裂北延的泗县一带,宿迁市活断层探测项目将其鉴定为早中更新世断裂 (《宿迁市活动断层探测与地震危险性评价报告》;淮河以南至合肥盆地 北段,断裂断续出露,在凤阳县马厂一带断层切割元古代石英片岩,所构 成的断层破碎带宽约12m,断层性质正断层,断层泥ESR测试结果为(207 ±33)ka和(142±14)ka,为中更新世断层(安徽省地震工程研究院,2017); 往南进入合肥盆地后呈隐伏状态,在断裂在定远以南,呈隐伏于合肥盆地 内,最新研究表明,断裂活动性弱,断错中更新统底界,垂直位移1-2米, 为早中更新世断裂(安徽省地震工程研究院,2017)。

桑涧子-广寒桥断裂(F8-2)

又称朱顶-石门山断裂,在定远以北段落宏观地貌特征显著,断裂位于 大巩山地垒与东侧明光盆地之间,盆山间线性色调分异十分明显,特别在 明光石门山一带,山体东缘呈笔直延伸,在石门口水库见有宽数十米的断 层破碎带,断层泥发育;在定远以南断裂基本隐伏于合肥盆地之下。沿断 裂往南 40Km,在白山凌水库周郭村附近开挖的探槽,显示上白垩统砂岩与元古代片麻岩呈断层接触,断层上覆中晚更新统粘土未受断层影响,判断断裂为早中更新世断裂。根据近年开展合肥及宿迁市活断层探测成果,该断裂活动性由北向南变弱,淮河以北有晚更新世活动迹象,淮河以南被鉴定为早中更新世断裂(安徽省地震工程研究院,2017)。

池河-西山驿断裂(F8-3)

又称池河-太湖断裂,该断裂是郯庐带最重要的分支断裂,在安徽境内 延伸较好,遥感影像特征最为明显。大致以女山湖为界,分为女山湖以南 段和女山湖以北段。

女山湖以北段断裂活动时代较新,在泗县赤山和泗洪重岗山开挖的探 槽中均揭露出晚第四纪以来的新活动证据,断层剖面多出露于白垩纪红层 与晚更新世粘土层中。

泗县赤山探槽(图2.4-1)、重岗山探槽(图2.4-2)等都揭露出丰富的

逆冲现象,且断裂带两侧的白垩纪红层表现 为对冲的特征(据姚大全等, 2012);赤山开挖的8个探槽均呈现出同一特征,即西侧白垩纪砂岩逆冲覆 于东侧第四纪粘土层上,探槽内均发现逆断型崩积楔,楔状体根部存在向 北西陡倾,向上则逐渐过渡为缓倾的上冲垮落面,部分表现为多次上冲垮 落面(叠置面),即多期楔体和下覆地层接触面,所有探槽槽壁均揭示出 此现象,但期次不等,有1期、2期的,也有3期的;重岗山开挖的3个探槽 均表现为东侧白垩纪红层逆冲覆于西侧晚更新世粘土层之上,有的探槽壁 呈现出白垩纪砂岩与晚更新世粘土层呈交错状接触。

在五河以北的峰山一带,探槽揭露西侧白垩纪红色砂岩逆冲覆于晚更 新世粘土层上(图2.4-3)。

断裂淮河以南段,在淮河-女山湖之间的明光浮山-紫阳山-独龙山-陡山 一线存在北北东向展布的线状岗地或隆起,岗地边缘断裂与池河一太湖断 裂在女山湖以北的延伸迹线较为吻合。明光紫阳山南猪场村及东二郎村开 挖的探槽,显示断裂断错晚更新世晚期的洪积物及坡积物,因此认为该断 裂为晚第四纪以来活动断裂(赵朋,2017;杨源源等,2017)。

图 2.4-3 泗洪峰山探槽典型剖面

女山湖以南段断裂活动性明显减弱。五河~庐江一带,破碎带多发育于 中生代地层中,中生代晚期断裂带活动强烈,线性构造地貌发育,断裂带 两侧多发育断陷盆地,新生代后期进入裂谷收敛阶段,代之为侧向挤压, 第四纪早、中更新世活动迹象明显。

在小池镇殷家上屋西北侧一路基发现出露断层(图2.4-4)。断层破碎带 发育于元古代花岗片麻岩内,主断层为一宽约20cm的断层带,两侧发育有次 级断层和碎裂岩。沿断面发育有厚度2-5cm的棕灰色断层泥,取断层泥ESR 样品,测年结果为(826±99)kaBP。断层顶部被第四纪砂砾石层所覆盖,两 者之间呈不整合接触关系,接触面较平直,未受断层活动影响。结合断层泥 测年结果及断层上覆地层情况,表明断层在早更新世晚期有过较强的活动。

图 2.4-4 殷家上屋西北侧断层剖面(赵朋等, 2018)

综上所述,池河-西山驿断裂大体上以女山湖为界,北段为晚第四纪断裂,南段为早中更新世断裂。

藕塘-清水涧断裂(F8-4)

又称嘉山(明光)-庐江断裂,为郯庐东界断裂,是华北板块与苏鲁造 山带交界断裂,走向北北东,在卫星图片上有清晰的显示。在女山湖南北 均呈隐伏态,无地貌显示,以南则由明南大横山经仁和集、藕塘镇至界牌 集东,总体线性特征较差,断裂多从变质岩区内部或边缘通过,新活动性 不明显。

断裂带内中生代碎屑岩沉积厚度达到数千米,而断裂东侧则缺失大部 分古、中生代地层,据江苏省地震工程院完成的《宿迁活动断层探测项目》 中针对该断裂的浅层人工地震勘探显示断裂两侧基岩面局部落差不大,这 与其走滑断裂本身的特点有关。宿迁市活动断层探测项目在合欢路实施的 跨该断裂钻孔联合 剖面探测结果(中国地震局地质研究所,江苏省地震工 程研究院,2015)表明,该断裂没有明显断错晚第四纪地层,并将其鉴定 为早中更新世断裂。综合分析认为,藕塘-清水涧断裂属于第四纪早中更新 世断裂。

(2) 乌江~罗昌河断裂(F16)

断裂南起枞阳县罗岭镇,经和县历阳镇、江浦桥林镇以北东方向沿长江 西岸延伸。该断裂是中生代老山隆起和宁芜断陷的边界断裂,走向NE,倾 向SE,具正断性质。断裂东南为江浦凹陷,其中堆积了侏罗纪火山岩系(J₁-2-J₃)和白垩纪红层(K_{2P}),中生代地层最大厚度近5000m,断裂西盘同时 期堆积较薄。新生代以来,特别是第四纪中晚期以来,断裂两侧地层的堆 积厚度差别不大(江苏省地质局,1974)。地貌上断裂西北侧主要为海拔 约40~50m的岗地(长江 II 级阶地),东南侧主要为冲积平原(长江 I 级阶 地和漫滩),岗地和平原之间的界线呈不规则的曲线。断裂通过处晚更新 世下蜀组黄土层也未受到影响。该断裂在卫星影像上有明显的线性反映。 在布格重力异常平面图上,沿断裂存在一条重力异常梯度带。在航磁ΔT异 常平面上,断裂东南侧为航磁负异常带,北西侧为航磁正值高异常。

江苏省地震工程研究院曾于浦口镇进行了该断裂浅层地震探测,探测结果均表明,基岩上方的P1、P2土层内部反射界面连续,未见错断迹象。依据横波速度推测P2反射界面为晚第四系底面。这些资料表明,该断裂为早~中更新世活动断裂。

综合大地电磁测深、浅层地震探测,地面地质调查等资料,断裂在印 支、燕山运动时曾有强烈活动,是中生代南京~芜湖断陷盆地的分界断层, 第四纪早期继续活动,造成断裂两侧第四系厚度有明显差别,据此推断该 断裂最新活动时间为中更新世。

(3) 南陵~小丹阳断裂(F21)

该断裂北起方山西,经凤凰山、陶吴、横溪、小丹阳,南陵戴家汇、 何湾,走向北北东,倾向南东东,具压扭性质。

断裂在重磁场上有很好的反映,东侧为重力负异常区,最低值达-28×10⁻⁵m/s²,西侧为正异常区,重力高值为 24×10⁻⁵m/s²。断裂两侧磁异常 也有明显的不同,东侧附近为负异常区,最低值-200nT,西侧为杂乱磁场 异常区,近断裂处为正磁异常带,最高值近 300nT。在宁芜断陷盆地内, 最大磁场值高达 2000nT,最小磁场值-500nT。局部磁异常长轴方向多为北 东向,少数为北西向。

沿断裂有玄武岩、辉绿岩出露。白垩纪赤山组红层(K_{2c})厚达 1000~ 1400m,呈楔形沿断裂自北向南延伸至陶吴、横溪一带。断裂切割深,断距 大,燕山运动时控制了火山岩喷发,使晚侏罗世火山岩分布在云台山~大 平山~西横山之间狭长地带。

跨该断裂的大地电磁测深地质解译剖面也清楚显示了断裂的存在,断层面倾向南东,古生界和中生界逆冲到燕山期闪长岩和基性岩浆岩之上,表现为逆断裂性质(江苏省地震工程研究院,2003)。

在方山西侧高家村南公路边剖面,断裂发育在白垩纪紫红色砂岩、薄层泥岩中。剖面上有多条小断层(图 2.4-5)。按走向可分为两组,一组走向 20~25°,倾向北西,倾角 80~89°,逆断层活动性质,是南陵-小丹阳断裂的组成部分。另一组走向 60°,倾向北西,个别倾向南东,倾角 75~85°,

其性质有的为逆断层,有的为正断层,是与南陵-小丹阳断裂相配套的次级断裂。两组断裂规模皆很小,所产生的垂直位移量 20cm,沿断面无断层泥,其上被紫红色网纹状黏土、灰色砾石层、黄褐色含砾黏土所覆盖。根据区域地层对比,它们应属中更新世风化层、晚更新世冲积层和残坡积层。在黄褐色含砾黏土底部取热释光样品 M-TL-1,测试结果为(84.58±7.19)ka。

综合浅层地震探测、地质地貌特征、年龄样品测试结果,南陵~小丹阳 断裂的最新活动时代应是第四纪早更新世,活动性质为逆断裂。

(4) 固镇~怀远断裂(F2)

自北向南依次通过固镇县城城西、怀远魏庄至怀远县城南附近,走向 20°左右,倾向 SE,倾角 50°左右。重力布伽异常图上反映为迭加在东西向 正负重力场上的近 SE 向重力低带,以东为东西向正异常带。

在怀远县荆山北,出露北北西向断裂,产状 SE∠62°,该断裂发育于 混合花岗岩内,断面平直,带宽约 20~50cm,带内发育片理化物质,固结 状,局部见褐色铁染,其西侧岩石破碎。

固镇~怀远断裂在地貌上控制了淮河的流向,并构成东为丘陵山地, 西为冲积平原的分界线。据钻探资料揭示,尹集~怀远一带,前震旦系、 震旦系、侏罗~白垩系地层走向不连续,前震旦系地层西延受控制,为蚌 埠块隆的西界断裂,并控制着新第三系和第四系的沉积。在姚山,晚元古 代庄子里组地层中发育强烈挤压揉皱现象,并发现 30 %SE∠42 °断层面,穿 切以前所有杂乱无章变形带,见黄褐色断层泥带,宽 1~5cm 不等,属固 镇~怀远断裂的平行构造。综合分析认为,该断裂最新活动时间为早、中 更新世,活动性质为压剪性。

(5) 茅山东侧断裂(F22)

断裂总体走向北北东,倾向南东,倾角35°~85°不等,局部向北西

陡倾。断裂宽窄不等,从数厘米至数十米,多处可以见到断层逆冲到晚更 新世以来的沉积地层之上。断裂错断了形成年龄为距今2.18±0.02万年至 2.78±0.07万年(¹⁴C年龄)的沉积物。表明该段在晚更新世以来有过活动 (据胡连英等,1997,2001)。

茅山东侧断裂构造地貌类型主要有冲沟扭错、冲沟局部变为开阔洼地、 沼泽或池塘、冲沟谷底产生断裂和构造鼓包。断裂西侧冲沟谷底坡度平缓, 一般0°~2°,断裂东侧冲沟底坡度较大,一般2°~6°,个别达12°。其 中陶家洼冲沟纵剖面较为典型,断裂以西形成向下凹的沼泽地,沉积淤泥 厚20-30m(图2.4-6)。断裂以东凹沟底下切,深达1.5m。反映茅山东侧断 裂具逆冲性质(据胡连英等,1994)。

图 2.4-6 茅山东侧断裂陶家洼冲沟纵剖面图(据胡连英等, 1994)

茅山东侧断裂在布格重力场上表现为重力异常梯级带,在航磁场上表现为串珠状异常条带,说明断裂在地壳深部依然有明显反映。沿断裂带多处见新近纪一第四纪早期的玄武岩喷溢。该断裂带在溧阳竹箦至溧水芳山段多处见晚更新世活动的地质地貌证据。它是区内中强地震最为活跃的一条断裂带,历史上发生的镇江、扬州、溧阳4¾~6.0级的破坏性地震均沿该断裂向北延伸的方向分布。其中1974年、1979年在溧阳发生的2次现代破坏性地震(5.5级、6.0级)与该断裂带活动有密切关系。

(6) 陈家堡-小海断裂(F25)

该断裂最早是由石油部门推断的,在老第三纪时江都隆起强烈上升, 而其北侧的高邮凹陷在断陷过程中接受了巨厚的阜宁群(E_{1-2fn})沉积。江 都隆起和高邮凹陷之间存在一条巨大的断阶带,通常被概括为陈家堡-小海 断裂。该断裂系由多条断裂组成的一个隐伏断阶带,其中主要断裂有2条。

陈家堡-小海断裂是江都隆起和高邮凹陷以及小海隆起和大丰凹陷的 分界断裂,该断裂长约 174km,走向北 50°东,倾向北西。该断裂断距较 大,如在江都隆起上的扬州附近,浦口组(K₂p)埋深约 120km,而在高邮 凹陷内的真武附近,下第三系底界埋深就达 6400m 之多。所以陈家堡-小 海断裂断距可能在 5km 以上。断裂明显控制了第四系沉积,如在高邮凹陷 南缘,第四系等厚线方向与该断裂走向大体一致。沿陈家堡-小海断裂形成 了 4 个串珠状第四系坳陷中心,其厚度从 120m 至 320m 不等。 此外,据钻探资料,陈家堡-小海断裂错断了盐城组(N_{1-2y})沉积。沿 该断裂带小地震活动较多,且表现出北东向条带状分布图象。综上所述, 陈家堡-小海断裂不但错断了盐城组地层,局部还控制了第四系沉积,而且 对现代小地震活动亦有一定控制作用,在构造地貌上反映为隆起和沉降的 差异边界。此外,据前人断层气测量结果,在该断裂附近断层气异常带宽 超过600m,异常峰值达827(脉冲值)。精密磁测也有异常显示,说明该断 裂是一条规模较大、活动性较强的断裂。综合分析,推断陈家堡-小海断裂 是一条隐伏的第四纪断裂,但迄今尚未发现陈家堡-小海断裂自晚更新世以 来仍有活动的直接地质证据。

(7) 严家桥~枫沙湖断裂(F17)

该断裂北起无为县严家桥、经麻鹰山、独山、杨家桥、至枫沙湖西侧。 总体走向 NNE,断面倾向西或东,总体长度约 60km。在地貌上,断裂位 于线性 NNE 向的低山丘陵前缘,卫星影像上反映清楚,沿该断裂于 1585 年在安徽巢县南发生 5³/4级地震与 1654年在安徽庐江东南发生 5¹/4级地震。

图2.4-7 无为六店山前汪村剖面

调查发现,该断裂为由多条断层组成,有的断层剖面上表现为逆冲性质,如在六店山前汪村(31°12.372';117°47.221'),主断面位于泥盆纪砂 岩与三叠纪薄层灰岩之间,前者逆冲到后者之上。在泥盆系中,见一次级断面和厚 10cm 的断层碎裂岩及断层泥,取 ESR 样品进行测试,结果为(469 ±47) ka (图 2.4-7)。

在断裂北端的严家桥(31°27.455'; 117°43.503'),所见断裂为正断性质,至少有3条断层切割三叠纪白云质灰岩,断层产状24°/SE∠65°,沿断面都发育1~2cm的细碎裂岩及断层泥。在断裂南段的周潭乡枫沙湖西侧(30°56.313'; 117°35.491'),断裂发育在花岗岩与侏罗纪砂岩之间,地貌上表现为清楚的谷地。根据侏罗纪砂岩中节理面产状,确定该断层的性质

为正断层。

该断裂与郯庐断裂平行,相距30km,可看作郯庐断裂带的一条分支断裂,根据断裂影象特征,断层物质的胶结程度及年龄样品测试结果,其最新活动时代是早、中更新世。

(8) 宣城~泾县断裂(F23)

该断裂是一条区域性的深断裂,区域范围内自赣北经石台、七都沿青 弋江至泾县、宣城,作NE向展布,倾向SE或NW。,倾角50~70°。该断 裂的存在不仅控制了两侧的地层、古生物,还控制了大量的岩浆岩及其矿 产的分布。

据宣城~南京地区布格重力异常图显示,江南断裂在该段表现为延伸 很长的重力梯级带和梯级带的线性排列。沿断裂带亦表现出磁异常梯级带 特点,断裂北侧为区域性正磁异常,南侧为封闭的呈串珠状排列的负磁异 常。重、磁异常反映的断裂带特征基本吻合。在地震解释剖面上,江南断 裂带主要呈现为发育在志留系中向南陡倾的强逆冲构造带,并在南北两侧 造成了一系列向北逆冲的叠瓦状逆冲断层及逆冲~推覆构造。志留系底面 及盖层与基底之间为主拆离面。据淮南~温州MT广义逆矩阵反演剖面解释, 断裂错开了中、上地壳电性层,向下进入下地壳(刘国生,1997)。

野外调查表明,在太平湖北岸发育于志留系的断面上,保留有三期擦 痕,其擦线侧伏向、侧伏角产状分别为:64°E、45°W和10°E。这与其 它观测点所得的统计数据基本吻合。它代表了该断裂经历了印支—早燕山 期的逆冲推覆、晚白垩—老第三纪阶段的伸展变形及新第三纪以来的逆冲 走滑三次构造变形的叠加(刘国生,1997)。此外,据徐嘉炜等(1987) 研究,从新三世以来亚洲东部大陆边缘上形成了陆上弧形构造—陆缘弧。 由于陆缘弧的发育使江南断裂受到近EW向的区域挤压,从其断面擦痕及断 裂带内构造透镜体判断,此时的断裂具右行逆平移性质。野外调查发现, 在泾县以北的断裂带内,发育近1km宽的断层泥带。此外,江南断裂在近代 还多次诱发地震(安徽省地矿局,1987;杨志坚,1988)。据钻孔资料证 实(安徽省地矿局,1987),泾县西志留系沿断裂逆掩在上白垩统宣南组 之上。但从整体看,此次逆冲规模较小,逆冲幅度也不大,反映了挤压应 力相对较弱。

在芳村太平至石台公路旁边,主断面产状55 %SE∠35°,该断裂构造带 宽约1.2km,以构造角砾岩为主,并见断裂泥发育,采集的断裂泥样品经电 镜扫描(SEM)测试分析(据中国地震局地质所),表明它的活动方式兼有粘 滑和稳滑,主要活动期为N2晚期至Q1。

综上所述,断裂发育于古生代和中生代地层中,在早古生代时期对南

61

北两边地层厚度、岩相和生物群等有明显控制作用,断裂两侧印支期褶皱 也有显著差异。断裂经历了多期活动,运动性质也随之变化。此外,沿断 裂发育一些晚白垩世的沉积盆地。在泾县赤滩至章家渡的青弋江谷地发育 新近系—第四系河相沉积。本文沿用前人的工作结论(中国地震局地质研 究所等,2006),认为该断裂为早、中更新世断裂。

2.4.2 近东西向、北西向、北西西向断裂

(1) 肥中断裂(F6)

该断裂西起河南明港,向东延至河南固始、安徽寿县隐贤集至肥东梁 园附近,是一条隐伏断裂。

该断裂隐伏于新生代盖层以下,已为航测、重力、电测深、钻探证实存在。在重力异常图上,该断裂表现为连续性较好的近东西向密集梯度带, 北侧为异常方向不稳定的重力低带,南侧为东西向线性重力高和重力低带。 在浅层地震解释剖面上及在撮镇~梁园钻孔剖面上,肥中断裂从梁园以北 通过,断面南倾,正断,上盘为老第三系地层,下盘为白垩系地层。

据野外零星露头观察,断裂北侧出露为早白垩世新庄组,南侧为晚白 垩世张桥组。该断裂大部分隐伏于第四系盖层之下,1:5万电测深资料结 果表明,该断裂带不仅对基底有明显的控制作用,并且在燕山期有过强烈 的活动,致使该断裂南降北升,中生代地层的底板埋深相差悬殊。北侧仅 500m,南侧则达700m。新生代以来,它控制着梁园盆地(E~Q)的沉积, 但尚未发现该断裂晚第四纪以来有明显活动的证据。

(2) 桥头集~东关断裂(F7)

该断裂北西起六安炎刘,向南经大杨,沿南淝河穿合肥市,在肥东桥 头集与郯庐断裂相交,之后再沿巢湖北岸通过,终止于东关,全长约 100km。 断裂主体呈隐伏状,但在撮镇南、桥头集以及巢湖附近有剖面出露。

肥东县桥头集陈家洼(31°46.209'N,117°32.749'E),断裂发育在白 垩纪红色砂岩和粉砂岩中,在一大型采石场从北向南见有多条断层剖面出 露(图 2.4-8),总体走向为 320~330°,倾向 SW。白垩纪地层断错明显, 断距大于 2m。断层破碎带内,发育有 1~5cm 的断层泥,新鲜,未固结。 断层泥样品的测试结果为(480±50)ka。断层面上擦痕明显,显示左旋。 野外观察发现,该断裂切割了属于郯庐断裂带的北北东向断层。据断层泥 新鲜程度和 ESR 测年,表明此断层在中更新世有过活动。

 1.断层; 2.覆盖物; 3.泥岩; 4.含砂泥岩; 5.含砾泥岩; 6.破碎带; 7.采样点 图2.4-8 肥东县桥头集陈家洼北西向桥头集一东关断裂剖面 (据中国地震局地质所, 2007)

在巢湖一带,发育一系列 NW 向断裂,这些断裂规模小、断续分布。 其中在巢湖市—方山一带该断裂线性特征明显,并控制侏罗系盆地沉积。 野外调查表明,断裂在巢县以西未明显断错古生界地层内 NE 向褶皱,只 形成多条小规模的 NW 向断层,总体活动微弱。

野外调查发现,在方山山前,发育宽约 300~500m 的山前台地,山前 台地由前寒武系石英砂岩地层构成,断裂发育在台地前缘。在蓬庄附近, 方山、尖山南侧发育二级陇岗,第一级高约 30米,第二级高约 80米。其 中第一级陇岗与方山山前台地相连,在断裂附近仅形成地貌低地,断裂两 侧无明显高差;第二级陇岗也与方山山坡上发育的高侵蚀平台高度相当, 说明断裂自第二级地貌面形成以来无明显垂直差异活动。

综合上述资料及近场区地貌定年、断裂地貌特征等,认为该断裂为中更新世断裂。沿该断裂于 1673 年在合肥南发生 M5 级地震。

(3) 自来桥~来安断裂(F14)

在自来桥发现该断裂剖面,走向 323°,倾向北东,倾角 85°,断面 中见断层泥,两侧为第三纪玄武岩,上覆地层为第四纪残坡积层。现场考 察发现,全新世及晚更新世残坡积层未见扰动,推测该断裂最新活动时间 在 N-Q2之间,未见晚第四纪以来有新活动的迹象(图 2.4-9)。

① 坡积层; ②第三纪玄武岩; ③断层破碎带
图2.4-9 第三纪玄武岩中出露北西向断层剖面图(32.6319°N, 118.3829°E)

(4) 临泉~刘府断裂(F4)

该断裂从河南省入境,经临泉县南西、阜阳市插花、利辛县刘寨、凤台县尚塘集、大兴集、怀远县明龙山至凤阳县刘府、殷涧一带,做NWW-SEE向延伸,长达265km,经钻探揭示,断裂北侧为太古界五河群变质岩系,南侧以震旦系和古生代地层为主。在凤阳山区北麓,晚侏罗世火山岩呈串珠状沿断裂分布,明龙山一带次级断裂发育,岩石破碎强烈。

通过对在明龙山所采断层泥样作电镜扫描(SEM)分析,发现断层泥中 发育裂而不破的现象,系缓慢断层运动所致,其中石英碎砾表面为苔藓状 刻蚀结构,形成于N2晚期,未见该断裂晚第四纪以来存在活动迹象。

(5) 颍上~定远断裂(F5)

该断裂总体走向近东西向,在寿县珍珠泉一带,下元古界霍邱群(Ar_{2hq}) 片麻岩推覆于青白口系至下寒武统(Pt₃~∈₁)之上,岩层挤压破碎,小型褶 曲和糜棱岩发育,主断面向南倾斜,倾角25°~30°。

从李一矿至洞山,经地表观测和钻探揭示,断面向南倾斜,倾角变化 很大,浅部达60°左右,向深部逐渐变缓,一般在18°~30°,最缓处仅 3°~5°。断裂主断面呈上陡下缓的弧形弯曲,将上盘的霍邱群(Ar_{2hq})片 麻岩逆掩在石炭、二叠系地层之上,水平断距达500m以上,表明该断裂在 燕山晚期发生强烈的逆掩作用;喜山期有一定程度的继承性活动,未发现 该断裂晚第四纪以来活动的迹象。

(6) 湖熟~溧阳断裂(F19)

该断裂位于南京、上坊、湖熟和上兴一线,走向NW 45~50°,倾向SW, 倾角较陡,为正断裂。地质上该断裂是NEE走向的宁镇山脉与NNE走向的

宁芜山脉的分界断裂。东北侧的宁镇山脉古生代地层形成线性延伸的复式 褶皱,上侏罗统和白垩系地层较零星,而西南侧宁芜山脉发育了巨厚的上 侏罗统和白垩系沉积,古生代地层则深埋地下。地貌上宁镇山脉的山体向 西南延伸被该断裂截止。NE走向的青龙山(最高海拔277m)向西南延伸到 该断裂迅速尖灭,在断裂西南盘变为海拔20m~50m的波状岗地,幕府山、 紫金山、大连山等山体延至该断裂时也突然中断,断裂西南侧为较平坦的 平原和岗地。江苏省地震工程研究院在垂直该断裂布设了7条浅层地震测 线,剖面显示为西南盘下降,东北盘上升,倾向SW,视倾角40~60°的正 断裂,视断距2~3m,基岩上方第四系底界面不连续,但断裂都没有断错晚 更新世以来的地层。在江宁上坊东耿岗路边见断层露头,走向N35°W,倾 向SW,倾角70°,断裂带宽约5m,取断层泥样作TL测龄,其年龄为 (13.87±1.04)万年(江苏省地震工程研究院,2004)。根据上述,该断裂最 新活动时代为早、中更新世,活动性质为正断裂。

(7) 幕府山~焦山断裂(F18)

该断裂又称长江断裂,从幕府山经燕子矶、栖霞山、延伸至镇江焦山, 总体走向近东西,断面北倾。断裂使幕府山、栖霞山等复式背斜的北翼产 生大幅度垂直位错,造成明显的断块升降运动,长江北形成了仪征断陷, 长江南形成了宁镇断块隆起。此断裂在地球物理场上有很好的反映,是一 条重力异常梯度带。断裂对第四纪沉积有一定的控制作用,在镇江、扬州 以西的长江谷地区,第四系厚约 50~70m,但在江北仪征小河口和扬州六 圩一带,第四系厚仅 20~40m,反映沿断裂第四纪堆积较厚。

据江苏地震工程研究院(1999,2003)跨断裂进行多条人工地震勘探, 幕府山~焦山断裂使前第四系基岩顶面产生了明显的垂直位错,向上可能 影响到下更新统,但晚更新统和全新统未受影响。

沿该断裂西端南京附近历史上于 499 年 8 月 5 日发生过 Ms4³/4 级、 548 年 10 月 27 日发生过 Ms5¹/2 级地震。综合上述,幕府山~焦山断裂为 早中更新世断裂,其活动性为张性正断。

(8) 宿北断裂(F1)

又称符离集大断裂,自西向东经亳州十河集、濉溪百善集南、宿州符 离集北侧,东延灵璧西部至江苏境内,走向近EW的隐伏断层,倾角35°-70°,是一条省内延长约200km的深大断裂(安徽省区域地质志,1987), 沿断层带北侧分布有燕山期的岩浆岩。

该断裂线性展布,在遥感影像上可清晰看出宿北断裂南北地貌差异, 北部为乾山、老龙脊等一系列山丘,南部则为平川旷野;另外,截淮阴山 脉于符离集一带的濉河于此突然改变成东西流向的地貌显著标志。在电法 测量资料,对该断裂符离集至灰古集一段反映更为明显,电法标识层的200-1000米的5条等深线符离集至灰古集一段之北呈密集条带出现,由于该断 层的作用而切断了其南1400-2000等深线。在航磁结果显示断层线北为点状 或者带状正磁异常,其南为舒缓负磁场(1:20万区域地质调查报告砀山幅、 宿州幅、灵璧幅,1977)。重力异常上均反映为近东西的梯变带,两盘岩 性差异较大,宿北断裂以北基底变质岩为新太古代-古元古代泰岩群,以南 为霍邱杂岩岩性(1:10万安徽省淮北地台区域赋煤构造研究及基岩地质图 编制成果报告,2013)。

陈昌武(2016)根据耿皇井田三维地震资料分析,发现宿北断裂耿皇支断层在第四系底界落差约10-50m,时间剖面显示断面断入第四系浅部,运用"断层生长线"模型得出断裂最新活动时代为35万年。综合上述,宿北断裂为中更新世活动断裂

2.4.3 区域主要断裂活动特点

根据前面对区域主要断裂地质地貌特征和年代测定结果,以及相关地 震活动资料的简要介绍,本区第四纪以来断裂活动的主要特征归纳如下 (表2.4-1):

(1)晚更新世以来活动断裂有郯庐带桑涧子~广寒桥断裂淮河以北段、 池河~西山驿断裂女山湖以北段、涡河断裂、茅山东侧断裂南段和霍山-罗 田断裂,其中其中郯庐断裂带规模最大、活动性最强,纵贯区域中部,发 生过1668年郯城M8¹/2级地震;沿霍山-罗田断裂一带,历史上于1917年在 安徽霍山发生过M6¹/4级中强地震,1973年发生M4.5级震群活动,2009年以 来该断裂带多次发生M1.0级以上地震,最大地震为M4.3级地震,体现出该 断裂带一定的新活动性;茅山东侧断裂南段为晚更新世-全新世活动断裂, 是区内中强地震活跃的一条断裂,在上沛发生过1839、1974和1979年M4³/4、 5.5和6级地震;

(2)区域以郯庐断裂带为界,以西主要展布北西向及近东西向断裂,以 东主要展布北东向断裂;

(3)区域中强地震多发生在北东向断裂与北西向断裂的交汇部位。
				3	表 2.4-1	区域主要断	裂特征一览表	表	
断裂 编号		断裂名称	区内长 度/km	断走向	层 产 ¥ 倾向	犬 倾角	断裂 性质	活动时代	地震活动
F1		宿北断裂	85	EW	S	缓倾	正断	Q1-2	-
F2	E	固镇~怀远断裂	125	NNE20 °	SE	50	正断	Q ₁₋₂	-
F3	7	太和~五河断裂	109	近EW	S	陡立	正断	AnQ	-
F4	1	临泉~刘府断裂	97	NWW	-	-	正断	Q ₁₋₂	-
F5	ヒガ	硕上~定远断裂	99	近EW	S	25~30°	正断	Q ₁₋₂	-
F6		肥中断裂	80	NWW~近 EW	S	30~60°	正断	Q ₁₋₂	-
F7	桥	头集~东关断裂	100	NWW	NE	陡倾	正断	Q1-2	1673年5级地震
		乌云山~合肥断 裂(F8-1)		NNE	E/W	60~80°	走滑	Q1-2	
	郑庐	桑涧子~广寒桥 断裂(F8-2)		NNE	E/W	60~80°	走滑	淮河以北段Q3; 淮河以南段Q1-2	1829年5 ¹ /2级地震
F8	断裂带	池河~西山驿断 裂(F8-3)	800	NNE	E/W	25~85°	走滑	女山湖以北段Q3- 4; 女山湖以南段 Q1-2	1868年5 ¹ /2级地震、1497 年4 ³ /4地震、1635年4 ³ /4地震
		藕塘~清水涧断 裂(F8-4)		NNE~NE	E/W	25~85°	走滑	Q1-2	
F9	7	六安~合肥断裂	45	近EW	Ν	陡倾	正断	前Q	-
F10	肥	西~韩摆渡断裂	37	EW	Ν	-	正断	前Q	-
F11	ì	每州~泗阳断裂	120	NNE	SE	60~70°	正断	Q1-2	-
F12	淮	阴~响水口断裂	251	NE	NW	>60 °	正断	前Q	-
F13	7	无锡~宿迁断裂	321	NW	NE	陡倾	倾滑	Q ₁₋₂	-

天长市化工集中区区域性地震安全性评价

				M		~		
断裂 编号	断裂名称	区内长 度/km	断走向	层 产 补 倾向	犬 倾角	断裂 性质	活动 时代	地震活动
F14	自来桥~来安断裂	94	NW	NE	陡倾	逆断	Q1-2	-
F15	滁河断裂	229	NE50~60°	NW	约65°	正断	Q ₁₋₂	-
F16	乌江~罗昌河断裂	164	NE	SE	约60°	正断	Q1-2	-
F17	严家桥~枫沙湖断裂	51	NNE	W/E	50~60°	正、逆断	Q2	1654年5 ¹ /4级地震, 1585年 5 ³ /4级地震
F18	幕府山~焦山断裂	52	近EW	Ν	50∼60°	正断	Q1-2	499年4 ³ /4级地震,548年5 ¹ /4级 地震
F19	湖熟~溧阳断裂	104	NW45~50°	SW	陡倾	正断	Q2	-
F20	板桥~南渡断裂	144	NW305~ 310°	NE	陡倾	正断	Q ₁₋₂	-
F21	南陵~小丹阳断裂	133	NNE	SEE	40~60°	逆断	Q1-2	-
F22	茅山东侧断裂	135	NNE	SE	35~85°	正断	Q ₃	1974年5.5级、1979年6级地震
F23	宣城-泾县断裂	40	NE40~55°	NW/SE	30~65°	逆冲倾滑	Q_1	1743年M5级地震
F24	宁国-绩溪断裂	25	NNE	SE	30~45°	逆断	前Q	-
F25	陈家堡~小海断裂	145	NE50 °	NW	45 °∼60 °	-	Q1-2	-
F26	宜兴~海安断裂	243	NE	SE/NW	60~80	-	前Q	-
F27	南通~济州岛断裂	100	近EW	-	-	-	Q1-2	-
F28	湖州~苏州断裂	82	NE	SE/NW	60~80	正、逆断	Q ₁₋₂	1501年 434级地震

第二章 区域地震构造环境

2.5 区域中强震地震地质标志

区域内众多震例表明,断裂活动的规模、类型、活动方式和活动速率 及其特殊部位与地震发生都具有一定程度的相关性,通过以上区域内中强 震的空间分布与构造活动、深部构造之间关系的研究,并参考其他类似地 区中强震地震构造研究的成果,本区发生中强震的地震地质标志可归纳为:

(1)M6.0~6.9级地震构造条件

①区域新构造断块活动较强,其边界为深断裂带控制,构造变形带具有规模较大、结构复杂等特征,并且构成控震构造和立交型孕震模型,而其中发震段最新活动时代为中更新世晚期~晚更新世,历史上沿其已发生一系列较小中强地震,例如1917年霍山 M6¹/4级地震和1652年霍山 M6.0级地震。

②地震发生在北北东向断裂与北西向断裂切割部位,共同组成共轭剪 切断块,并控制了晚白垩世、新生代的断(坳)盆地和火山活动,北北东 断裂部分构造段在晚更新世仍有活动,构造活动与现代区域应力场相匹配。 如 1831 年凤台东北 M6¹/4 级地震震中位于近东西~北西西向的临泉~刘府 断裂与北北东向固镇~怀远断层的次级断裂交汇点附近。

③规模较大的第四纪活动断裂带是中强地震的主要发震构造,其中强 震多与规模较大的北北东、北东向、北西向且具走滑分量的第四纪活动断 裂或断裂段相关。另外,断错早、中新世地层线性地貌明显的断裂或断裂 段也是 6 级地震的发震构造,如 1481 年涡阳 M6 级地震发生在断错早、中 更新世地层,线性地貌明显的涡河断裂上。

④地震发生在北西向、北北东向、北东向和近东西向多组早~中更新 世断裂的交汇地段,构成较复杂的微断块构造,其中有一组断裂控制了二 级新构造分区的边界。

(2)M5.0~5.9级地震构造条件

①地震发生在 M6.0-6.9 级地震构造环境中。

② 区 域 大 范 围 隆 起 构 造 单 元 与 伸 展 运 动 构 造 单 元 的 邻 接 拗 断 部 位 易 孕 育 较 小 中 等 地 震 。

③地震发生在早~中更新世曾经活动的区域断裂带上,这些断裂多与 其控制的晚白垩纪、古近纪或新近纪以来的断陷(坳)型沉积或火山岩盆 地有联系。

④地震发生在早~中更新世曾经活动的区域断裂的次级分支断裂附近,或其收敛、转折、末端等构造部位。

⑤小震活动密集的网络结点或成丛集中地带与较小中等地震密切相

关。

⑥地震发生在重力梯度带或航磁异常带的拐折部位,或异常轴通过的 区域;地震发生莫氏面埋深的斜坡部位,磁性层上、下界面的隆起部位。

2.6 区域地震构造综合评价

(1)区域范围位于我国大陆中东部,涉及到几个发育历史有着很大差异 的一级构造单元。以郯庐断裂带为界,西北部为华北断块区,西南部属于 秦岭~大别山断褶带,东南大部分属于下扬子断块区。场地位于下扬子断 块区苏北-南黄海断坳之内,在强烈的区域 NW-SE 向拉张作用下,形成 一系列由 NE 至 NEE 向正断裂控制的断陷盆地(凹陷),如盐城凹陷、高 邮凹陷等。它们多为南断北超的半地堑,往往成带分布,相应组成 NEE 向 展布的盐阜坳陷和东台坳陷。坳陷间是建湖隆起,总体呈坳隆相间、多凹 多凸的复式盆一岭构造系统。

(2)区域平原、山地、丘陵俱全,河流和湖泊交错。大致以郯庐断裂带 分为东、西两大地貌单元;在新构造背景上,区域新构造运动较强烈,以 大面积间歇性升降、断块差异运动和断块活动为特征;场地位于苏北~南 黄海盆地断坳区内,为中生代~新生代继承性沉降区,古近纪基本是迭合 在中生界之上的断陷沉积,其中高邮凹陷厚达 5400m。新近纪以来为广盆 坳陷型沉积,沉降中心有自西向东迁移的特点,新近系和第四系最大厚度 为 2300m。

(3)从区域的地球物理场和深部构造方面分析,重、磁异常梯度带或异常带的扭曲和不同方向异常的交汇部位;地壳厚度变异带的转折、畸变部位,尤其是上地幔隆起、地壳厚度剧变,并有壳内低速层存在的地段,多是强震的发生场所。

(4)在区域新构造单元的边界,即新构造运动差异性较强的地带,多组断裂交汇的地区,存在晚第四纪活动断裂的地区往往是强震发生的场所。 区域中强地震多发生在北东向断裂与北西向断裂的交汇部位、早~中更新 世活动的区域性断裂及晚新生代以来具有继承性活动的白垩纪~老第三 纪断陷盆地附近。

(5)区域内断裂构造发育,以北东向、北西向和近东西向断裂为主。其 中北东向断裂规模较大、活动历史较长,北西向断裂具有一定新生性,控 制晚新生代盆地。除个别断裂为晚更新世活动断裂外,大部分断裂的最新 活动时代在早、中更新世或前第四纪。晚更新世以来活动断裂仅有郯庐断 裂带桑涧子~广寒桥断裂、池河~西山驿断裂、茅山东侧断裂等。

(6)场地位于著名深大断裂郯庐断裂带附近,在区域范围内郯庐带各分 支的活动性有所不同。其中,乌云山~合肥断裂和藕塘~清水涧断裂两条 分支断裂活动性较弱,为早中更新世断裂; 秦涧子~广寒桥断裂和池河~ 西山驿断裂活动性较强,秦涧子~广寒桥断裂淮河以北段和池河~西山驿 断裂女山湖以北段为晚第四纪断裂。整体来说,郯庐断裂带具有分段活动 特征,大概以淮河及其南部的女山湖为界,北段活动性强于南段,其中南 段的地震活动处于中强低频段,沿线历史上发生过多次强烈地震,如 1829 年 11 月五河 M5¹/₂ 级地震、1868 年 10 月定远南 M5¹/₂ 级地震,如 1829 年 11 月五河 M5¹/₂ 级地震、1868 年 10 月定远南 M5¹/₂ 级地震、1673 年 3 月合肥 M5 级地震;而北段活动性较强,尤其是秦涧子~广寒桥断裂和池 河~西山驿断裂,历史上曾发生 1668 年郯城 M8¹/₂ 级地震,因此秦涧子~ 广寒桥断裂淮河以北段、池河~西山驿断裂女山湖以北段附近具备发生 6.5 级以上地震的构造背景,未来一旦发生强震,将直接影响到场地地震危险 性分析的结果。 第二章 区域地震构造环境

附图I天长市化工集中区区域地震构造图

第三章 近场区地震构造环境分析

近场区地震构造评价是在收集、分析已有调查资料和研究成果基础上,对近场区的地质构造概况、新构造运动特征、主要断裂活动性和地震构造环境等加以评价,同时对历史地震及近场区小震活动进行分析评价,为近场区的断裂活动性鉴定和潜在震源区划分提供依据。

3.1 近场区地貌及地质构造基本特征

3.1.1 近场区地貌

近场区地处苏北平原与张八岭隆起带过渡地区,地势总体表现为 西北高、东南低,区内地形存在一定起伏,海拔高度范围一般在5-50m。 根据地貌形态,结合海拔高度、遥感解译等将区内划分为波状平原及 冲积平原两类地貌类型(图3.1-1)。波状平原海拔高度一般在20-40m, 由晚更新统戚咀组冲坡积物构成,冲积平原海拔高度一般在5-15m, 由全新统大墩组冲积、湖沼积物构成。其中波状平原分布于近场区北 侧、西侧,呈东西向垄岗状分布,主要为区内河流二级、三级阶地。 冲积平原分布于近场区中部和东部,夹持于波状平原之间,构成区内 河流的河漫滩、一级阶地。目标区位于冲积平原之上,地形平坦,海 拔高差小于10m。图3.1-2为近场区A-B线地形剖面图。

图 3.1-1 近场区地形地貌图

图3.1-2 近场区A-B线地形剖面图

3.1.2 近场区地质构造基本特征

近场区位于扬子断块区的下扬子台坳北缘,横跨苏北盆地内金湖 坳陷与天长隆起带。区内地质构造主要是燕山地壳运动以来生成的北 东向隆起、凹陷和断裂,褶皱微弱,规模小,多成短轴背斜和向斜。

天长隆起带:位于杨村~汊涧断裂南侧,呈北东弧形分布,长 50km,宽15km(图2.2-1)。隆起带主要由古生界地层组成,最高处在 郑集露出地表。天长隆起带在古新世发生多次的拉张与扭动、沉积与 抬升,内部构造较为复杂。

图 3.1-1 天长隆起带地质构造剖面图

(据江苏省地矿局, 1979)

金湖凹陷:南以杨村~汊涧断裂为界,北抵江苏金湖,呈北东向 展布,长70km,宽20km,是在震旦系至三叠系褶皱基础上长期发育 成的继承性凹陷,主体为晚白垩世-新生代形成的南断北超的箕状断 陷盆地。坳陷内最老地层是白垩系浦口组砂砾岩,主要为第三系含油 碎屑岩。金湖凹陷经历了仪征、吴堡、真武、三垛(始新世早期)和 盐城(上新一中新世)等多期次构造运动。凹陷中心在龙冈附近。

近场区岩浆岩不甚发育,岩性单一,分布零星,规模小。主要分

布于旧铺镇一带。旧铺镇一带及近场区以南的冶山镇、横山村一带岩体成因类似,共有大小岩体10余处,较大的横山岩体,形成于1.16亿年前,呈北东向延伸的椭圆形岩株,大部分隐伏于地下,露出面积5 平方公里。主要岩性为石英闪长岩、闪长玢岩。岩石由石英、长石、 角闪石和黑云母组成。

3.2 近场区第四系分布特征

近场区地层属下扬子地层分区,天长地层小区,区内第四系发育, 下更新统豆冲组(Q₃^d)和中更新统泊岗组(Q₂^b),在近场区内均未 见有出露。地表主要分布为上更新统戚咀组(Q₃^q)及全新统大墩组 (Q_h^d)地层,成因类型有冲积、洪积、冲洪积、湖积等,现简述如 下:

上更新统戚咀组(Q39):杨钟健1955年命名,层型剖面位于江苏 泗洪戚咀村。岩性分三段,上段为棕黄色粉砂质亚粘土,局部夹粉砂, 含铁锰质结核及钙质结核;中段为灰黄、灰色色粉细砂互层,或相变 为棕黄色粉砂质亚粘土、粉砂不等厚互层,夹亚粘土,含钙质结核及 铁锰质结核;下段浅棕、黄棕色角砾层,夹桔黄色灰绿亚粘土。据所 采哺乳动物化石及测年,时代为更新世晚期。区内戚咀组分布广泛, 发育良好。岩性大致可分三段。

下段:主要分布在丘岗边缘低洼处及平原区,厚度0-20m,地表 未见出露,层底最大埋深70m。岩性为灰黄、灰、青灰色含砾中-粗砂, 局部含泥质,区内主要见于扬州送桥镇一带呈扇状分布。成因为冲洪 积,其它地区均为亚粘土,含大量的钙质结核。

中段:地表极少出露,层底最大埋深50m。岩性为棕灰、红棕色 亚粘土、粘土,含钙质结核。丘岗及平原大部分地区有分布,岩性稳 定,厚 0-25m,成因为冲积、冲一坡积。

上段:为灰黄、棕黄、土黄色亚粘土,含钙质结核,结核多呈圆状、滚圆状,大小一般2-3cm,区内岩性稳定。主要分布于丘岗及平原区,厚 0.5-25m,厚度由西向东增厚,层底最大埋深25m。成因为冲积、冲-坡积。

本组与下伏泊岗组呈平行不整合接触,成因类型多样。冲积成因 的岩性具下粗上细的二元结构,构成一完整的沉积旋回,普遍含铁锰 结核及钙质结核,局部钙质结核富集成层;冲一坡积成因主要分布在 丘岗坡麓及与平原区过渡地带,与冲积层呈水平相变。沉积物厚度从 东向西,由薄逐渐变厚,山麓地带最厚,向山顶变薄。

全新统(Qh^d)大墩组:陈希祥1981年创名,层型剖面位于邳县四户乡大墩子。岩性为土黄、灰黄、灰色亚砂土、亚粘土、粉细砂不

等厚互层,中下部夹灰、灰黑色淤泥质亚粘土,底部为灰、灰绿色含砾亚粘土,根据所采动物化石及测年资料,时代为全新世。本组在区内分布广泛,岩性大致可分三段。

下段:岩性为灰、深灰色淤泥质亚粘土、亚砂土、粉砂。主要分布于汊河-天长一带河谷地区,厚0-5m不等,层底最大埋深12m左右。成因为冲积、冲-湖积。

中段:岩性为灰、深灰、青灰、黑色淤泥质亚粘土、粉砂质淤泥、 亚砂土,局部夹泥炭层。分布较广泛,大部分平原区及丘岗区冲沟中 有分布,地表未见出露。层底最大埋深10m,厚度0-5m。成因为湖积、 冲-湖积、湖-沼积。

上段:岩性为灰、灰黄、灰褐、青灰色亚粘土、亚砂土、淤泥质 亚粘土。分布广泛,平原区及丘岗冲沟、地表均有出露,分布高度从 海拔3-50m不等,大部分分布在海拔10m以下,厚度0-6m。成因为冲 积、冲-湖积、冲-坡积、冲-洪积。

图3.2-1为区内第四系剖面图(据25万南京福地质调查报告),第 四纪松散堆积物厚9.10m,可分7层,其中层⑦为大墩组,层⑥为戚咀 组,层④-①为豆冲组。

⑦ 大墩组 黄褐、褐黄、褐灰色粉质亚粘土。含约5%的铁锰结核,核径一般为1-3mm,呈圆球状,分布较均。

⑥ 戚咀组 红棕、黄棕色粉质亚粘土。含约5%的铁锰结核,核径一般为1-3mm,呈圆球状,分布较均。

⑤ 泊岗组 黄、灰黄色亚粘土。含约5%的铁锰结核,核径一般为1-2mm,呈圆球状,分布均匀。底部局部夹透镜体砂砾层。

④ 黄、灰黄、黄棕色含砾中一粗砂。砾石含量15%左右,成分以石英岩为主,少量泥砾,砾径一般为0.2-1cm,磨圆度好,分选性一般到差,砾石分布较均。

③ 红棕、棕灰、黄色含砾中一粗砂。砾石含量5-10%,砾石成 分以石英岩为主,少量泥岩,砾径0.2-0.5cm,大者达2cm,磨圆度好, 分选性中等,砂以中-粗砂为主。

② 红棕、棕黄、黄色含砾粗砂。砾石含量约10%,成分为石英岩(硅质岩)、少量泥岩及泥质团块,砾径一般0.2-0.5cm,大者达2cm, 磨圆度好,分选性中等,砂以中-粗砂为主。

 灰红、灰黄、褐黄色砂砾层。砂、砾各占50%,砂主要为中-粗砂,砾石成分主要为石英岩(硅质岩),少量泥岩,石英岩砾径一般为
 0.2-1.5cm,泥岩砾较大,达5-15cm,底部砾石较多,由下至上,由大变小,砾石磨圆度好,分选性中等。

76

4.7	сл	层	孔深	ىلى لى	厚)	度(米	٤)
组	反	号	(米)	石性	层	段	组
大墩组 (Q _h d)		7	- 0.90 -		0.90		0.90
戚 咀 组 (Q _p q)		6			3.70		3.70
泊岗组 (Q _p b)		5	- 4.60 -		1.10		1.10
豆冲	上 段	4	- 3.70 -	· · · · · · · · · · · · · · · · · · ·	1.40	1.40	
组	中段	3	- 7.40 -	оо	0.30	0.80	3.40
$(Q_p d)$	下 段	1	- 7.90 -	· · · · · · · · · · · · · · · · · · ·	1.20	1.20	
黄岗组 (N ₁ b)			- 9.10 -				

图3.2-1 天长市第三砖瓦厂第四系剖面图

3.3 近场区新构造运动特征

新生代第三纪(距今约8000万年),近场区为继承性升降运动,早 期南部上升,北部凹陷为湖盆洼地。晚期断裂和岩浆活动强烈,横山、 釜山火山喷发,堆积了200米厚的玄武岩;第四纪时(距今约200万年), 气候由炎热转冷,洋面下降,发生普遍的冰川活动。晚更新世(距今 约15万年),海水自东向西浸入,海岸线接近龙集至仁和集一线。后 期地壳缓慢上升,海水退出,内陆凹陷,湖泊河流纵横,沉积物广泛 分布。

近场区的新构造运动主要表现为局部的升降运动。从整体来看, 近场区西部上升、东部下降;西南上升,东北下降。以老子山~佛窝 为界,东侧为沉降区,地貌上表现为地势低平,河渠纵横交织,湖泊 星罗棋布,西部为上升趋,地势稍高,为低山丘陵区,发育高度不等 的阶地,深切的河谷和冲沟。分析从双沟至铜城一线上第三系和第四 系的厚度变化(图3.3-1),可以看出东厚西薄的趋势。

升降差异同时还表现在北东下降,南西上升,受北西向构造控制,

南西侧上升幅度大,地势较高,多为150m的丘陵,有发育的阶地、 深切的河谷、山体滑坡等现象;北东侧下降,地势低缓,一般在海拔 20m以下,自南西至北东上第三系和第四系厚度明显增大(图3.3-2)。

图 3.3-1 双沟至铜城上第三系和第四系厚度变化(据江苏省地矿局, 1979)

图 3.3-2 半塔至官塘上第三系和第四系厚度变化(据江苏省地矿局, 1979)

3.4 近场区主要断裂活动性

近场区断裂比较发育,展布的方向主要为北东向,断裂的共同特点是:在近场区多隐伏于第四系之下,最新活动时代大多为前第四纪和第四纪早期,主要断裂有杨村~汊涧断裂、滁河断裂和无锡-宿迁断裂(附图II)。表3.4.1为主要断裂活动性特征一览表。

以下就根据所收集到的资料、野外调查的结果,对近场区内主要断裂的活动 性进行评价。

78

编号	断裂名称	产状	性质	区内长度 (km)	活动时代	判定依据
F1	杨村~汊涧断裂	走向 NE,倾向 N、 NW,倾角 50°~ 70°	正断	42	PreQ	钻探、浅震
F2	滁河断裂	走向 NE,倾向 N、 NW,倾角 60°~ 70°	正断	4	Q1-2	地貌,控制 N-Q1 坳陷
F3	无锡~宿迁断裂	走向 NW,倾向 NE,倾角陡	正断	29	Q2	钻探

表3.4-1 近场断裂活动性特征表

3.4.1 杨村~汉涧断裂(F1)

该断裂横跨近场区中部,走向NE,为隐伏断层,长约42km。断裂构成金湖 凹陷的南界,天长隆起带的北界,由两条平行的逆断层组成,呈北东向延伸。断 裂北西侧金湖凹陷内发育巨厚的中生界。该断裂起源于印支期华北与扬子板块造 山过程中,为苏鲁造山带南缘的前陆逆冲断层,断裂在晚白垩世-古近纪苏北盆 地成盆期间复活,成为盆地内的大型主干断层。

钻孔资料揭示断裂倾向南东,上盘为寒武系和奥陶系,下盘为巨厚的阜宁群, 上盘逆冲(图3.4-1)。改断裂在古近纪(E)晚期有过活动,但未错断新近纪(N) 地层,分析认为,该断裂为前第四纪断裂。

图 3.4-1 杨村~汉涧断裂剖面图 (据江苏省地矿局, 1979)

苏北油田地震勘探资料揭示,杨村-汊涧断裂带多表现为正断层,大多都是 向北至北西倾,总体上都是由一系列同向正断层组合而成(图3.4.2)。平面上, 其主干断裂呈北东向展布,下降盘发育一系列与之斜交的北西西向、北东东向和 近东西向正断层,共同组成羽状断裂系统。剖面上,该断裂主要有y状、反y状、 多级y状、铲状、顺向与反向平行状、地堑状、地垒状等样式。该断裂在泰州期 开始活动,断层活跃时期是在阜宁期,其中阜四段时期断层的活动速率达到最大 值,从戴南期开始断层活动强度开始降低,呈现明显的下降趋势。地震勘探剖面 均显示断层未断错第四纪地层,为前四纪断裂。

图 3.4-2 金湖凹陷杨村断裂带 dlg_i891 线地震解释剖面 (据朱晓超, 2017)

杨村-汊涧断裂在区内为隐伏断裂,钻孔勘探资料和地震勘探资料给出的断 层倾向相反,考虑钻孔勘探资料较为局部,认为应以油田地震勘探资料为准。即 该断层在区内为走向NE,倾向北、北西的正断层。不同资料均显示该断层第四 纪以来不活动。

3.4.2 滁河断裂(F2)

滁河断裂从永宁镇西南沿滁河向北东延伸至六合龙池乡附近被施官集断裂 切断平移后,继续向北东延伸到天长南,向西南则至桥头集~东关断裂。区内长 约4km。断裂存在依据主要有以下几点:

①滁河断裂两侧岩性、厚度等差异较大。北西侧以灰岩为主,南东侧以白云 岩为主。北西侧从志留纪至早、中侏罗世仅有约100m厚的早志留世地层,其余 地层均缺失;而南东侧地层齐全,志留系至中、下侏罗统厚达5539m; ②滁河断裂两侧变形特征不一样,北西侧褶皱紧闭,南东侧开阔;

③沿滁河断裂存在一条明显的北东向重力异常梯度带,在2km水平距离内重力差达22×10-5m/s2;

④滁河断裂北西侧为六合~全椒坳陷,沿断裂带坳陷变深,沉积了白垩纪至 新生代地层,厚度近4800m;

⑤沿断裂分布许多温泉、冷泉,如汤泉温泉、琥珀泉等。

滁河断裂对六合~全椒坳陷的形成和演化有重要影响,在近滁河断裂的深凹 中堆积了晚白垩纪红层(K₂)。自上新世以后断裂活动趋向缓和,但仍然控制着 上新世以来的地层(N+Q)沉积厚度。

在和县善后镇开展的浅层物探和地质解释中(据中国地震局地质研究所, 2011), C1测线551CDP北侧基岩以白垩系上统为主, 南侧以寒武—志留系为主, 但其上可能不整合有薄层白垩系, 基岩面未出现断点的图像(图3.4-3), 结合地 质资料分析, 认为该处可能是断距很大的滁河主断裂的发育部位, 但其上第四系 平整分布, 未见构造扰动迹象。

图 3.4-3 C1 测线时间剖面及地质解释剖面图

(横向比例尺 1: 5000, 纵向比例尺 1: 1000) 滁河断裂对滁河水系有相当大的影响,滁河断裂倾向北西,由于南东侧龙洞 山、钓鱼台等断块山体的不断抬升,使滁河形成一条极不对称的水系,北侧水系 密而长,南侧水系疏而短。上述断块差异升降、第四系(Q)厚度变化、水系演 化及地震活动资料均表明滁河断裂自第四纪以来仍有一定的新活动性,尚未发现 该断裂晚更新世以来活动的证据。

3.4.3 无锡~宿迁断裂(F3)

该断裂带北起邳县,穿越郯庐断裂带,经宿迁、洪泽、高邮、镇江、常州延 伸至无锡以南,全长约 300 km,区内长约 29km。总体为南东一北西走向,其 新构造活动特征在地质地貌上的表现尤为突出。断裂带构成了长南带地貌构造单 元的分界线,断裂带之东为平原沉降区,之西为低山丘陵构造剥蚀区,断裂带两 侧明显具西高东低的地形地貌特征,并沿断裂带发育了一系列湖泊,从南至北有 太湖、邵伯湖、高邮湖、洪泽湖、骆马湖、微山湖等。断裂带之西有众多火山口 及第三系岩盐分布。该断裂带切穿了其他方向的构造,反映了最新活动构造特征。 据历史强震资料,沿断裂带陆续发现一些历史地震遗迹,如:999年11月3日发生 在常州的M5.5级地震和1624年2月10日发生在扬州的M6.0级地震,这些历史地震 说明了该断裂带的构造活动性具有明显的分段特征。

扬州附近的钻孔联合剖面显示(图3.4-4),该断裂在邵伯湖东西两侧中更新世及之前地层界面存在显著落差,根据第四系和上新统底界落差计算得出断裂垂直活动速率为0.010-0.015mm/a,属于中更新世活动断裂。

图 3.4-4 邵伯湖两岸钻孔连井剖面及地层剖面图(王浩男, 2018)

3.5 近场区地震构造环境综合评价

近场区地处苏北平原与张八岭隆起带过渡地区,地势总体表现为 西北高、东南低,区内地形存在一定起伏,海拔高度范围一般在5-50m。 根据地貌形态,结合海拔高度、遥感解译等将区内划分为波状平原及 冲积平原两类地貌类型。

近场区地层属下扬子地层分区,天长地层小区,区内第四系发育, 下更新统豆冲组(Q3^d)和中更新统泊岗组(Q2^b),在近场区内均未 见有出露。地表主要分布为上更新统戚咀组(Q3^q)及全新统大墩组 (Qh^d)地层,成因类型有冲积、洪积、冲洪积、湖积等。

新生代第三纪(距今约8000万年),近场区为继承性升降运动,早 期南部上升,北部凹陷为湖盆洼地;晚期断裂和岩浆活动强烈。第四 纪时(距今约200万年),气候由炎热转冷,洋面下降,发生普遍的冰 川活动。晚更新世(距今约15万年),海水自东向西浸入,海岸线接近 龙集至仁和集一线。后期地壳缓慢上升,海水退出,内陆凹陷,湖泊 河流纵横,沉积物广泛分布。

近场区断裂比较发育,展布的方向主要为北东向,断裂的共同特点是:在近场区多隐伏于第四系之下,最新活动时代大多为前第四纪和第四纪早期,主要断裂有杨村~汊涧断裂、滁河断裂和无锡-宿迁断裂。其中,杨村~汊涧断裂为走向NE,倾向N或NW的正断层,第四纪以来不活动; 滁河断裂为走向NE,倾向N或NW的正断层,第四纪早期有活动;无锡-宿迁断裂走向NW,倾向NE,钻孔资料解释的最新活动时代为中更新世。

综上,近场区位于苏北平原与张八岭隆起带过渡地区,不存在晚 第四纪以来活动的断裂,区内断裂最新活动时代为中更新世。有史记 载以来,近场区历史上发生的最大地震震级为M5.0。考虑区域构造背 景及近场区断裂活动性,综合判定近场区潜在最大地震震级为M6.0级。

83

第三章 近场区地震构造评价

第四章 目标区地震工程地质条件勘测及断层探查

根据国家标准《工程场地地震安全性评价》(GB17741-2005)、 《建筑抗震设计规范》(GB50011-2010)、《区域性地震安全性评价 工作大纲(试行)》(中震防函〔2019〕21号)等规定,对目标区场 地范围内的地震工程地质条件进行综合评价。本项目进行如下几方面 工作,以获取场地工程地质相关资料,进行目标区地震反应分析和地 震地质灾害评价。

(1)在广泛收集和整理本地区已有工程地质资料的基础上,对场 地地形、地貌、工程地质条件、水文地质条件以及地震地质灾害进行 现场勘查。

(2)根据不同地形、地貌或地层覆盖等场地条件,在分析已有钻 孔资料的基础上,进行场地钻孔补充探勘,以控制场地的地震工程地 质条件。

(3) 实测场地钻孔土层剪切波速,经合理分析,构建了场地的剪切波速剖面,划分场地类别。

(4)选取钻孔的典型土样进行室内土样常规测试、颗粒分析和剪 切模量与剪切应变、阻尼比与剪切应变关系试验等,作为场地土层动 力反应分析计算的基础资料。

(5) 根据近场地质构造图和断裂调查结果,进行目标区隐伏断裂探查。

4.1 目标区场地地质概况

4.1.1 目标区场地地形地貌

天长市位于安徽省东部、高邮湖西岸,与长江、淮河相邻,地处 北纬32°27′27″至32°57′36″、东经118°39′19″至119°13′ 23″之间,天长市域地势由西南向东北逐步降低,成簸箕形倾向高邮 湖,属于半岗半圩丘陵地区。西南边境分布着草庙山、横山、冶山等 低丘小山,最高处海拔228.8m;东部多湖荡,有白荡湖、牧马湖、高 邮湖及沙湖、洋湖等,最低海拔3.5m。根据省内地貌的宏观差别,即 区域地貌的综合特征而划分,受宏观的新构造运动格局和影响新构造 条件的大地构造基础控制,天长市属于沿江丘陵平原(IV)地貌区。 地貌亚区是在地貌区内根据区域地貌的具体差异划分的次一级地貌 区划。其划分的依据,在山地和丘陵区为区域性断裂两侧不同的升降 幅度所控制的切割深度不一的山地、丘陵和山间盆地;在平原中为不 同的新构造沉降幅度和河流堆积强度所造成的区域性地貌形态差别, 以及残留的丘陵区,天长市属于江北丘陵和波状平原地貌亚区。

依据地貌形态成因类型,天长市可进一步划分为河谷平原、波状 平原、低丘、中丘4种地貌类型。其中,钻孔勘察区在北部铜城镇, 钻孔海拔高程在13.04—14.74m(图4.1-1),属于河谷平原。该地貌 类型区地面标高5~20m,相对高差小于10m,由第四系全新统冲积物 组成,主要分布于中部和北部,主要微地貌类型为缓坡地。

图 4.1-1 目标区周边范围数字化三维高程地形图

4.1.2 目标区场地水文地质条件

根据地下水赋存的孔隙介质条件,天长市地下水类型主要有松散 岩类孔隙水、玄武岩类孔洞裂隙水、花岗岩类风化裂隙水、碳酸盐岩 类岩溶裂隙水四大类。由于各类型地下水所处的水文地质条件差异较 大,其富水程度有很大不同。

松散岩类孔隙水基本上分布于天长市城乡各地,是天长市城乡供水的主要来源。按照地下水的富水程度可划分为富水区、中等富水区、贫水区。武岩类孔洞裂隙水主要分布于安乐、便益、石梁、郑集以西的广大地区,以及金集、谕兴附近。地下水赋存于玄武岩孔洞裂隙中, 玄武岩一般厚度28~70m,新街、郑集附近可厚达120~150m;局部呈 多层结构,夹薄层粘土。由于构造裂隙发育的不均一性,导致局部地 下水不甚丰富,单井涌水量一般为100~500m3/d。地下水具有承压性 质,在多年的开采状态下,静水位埋深已经深达17~40m。水化学类 型一般为HCO3-Ca•Mg型,pH值7.0~7.9,溶解性总固体一般小于 1.0g/L。花岗岩类风化裂隙水分布于南部的关塘、冶山附近。地下水 主要赋存在花岗闪长岩风化裂隙中,风化层厚度2~5m,埋深14~ 60m,地下水不甚丰富,单井涌水量一般小于100m3/d。地下水具有 半承压-承压性质,在间断开采状态下,静水位埋深已经深达10~20m。 水化学类型一般为HCO3-Ca型,PH值7.0~8.0,溶解性总固体一般小于 1.0g/L。碳酸盐岩类岩溶裂隙水分布于南部的关塘附近。地下水赋存 于早寒武世幕府山组碳酸盐岩岩溶裂隙中,主要岩性为灰岩、白云质 灰岩。由于受到岩浆侵入的影响,幕府山组蚀变大理岩被切割成残留 体和捕虏体。断裂构造及岩溶裂隙较发育。地下水水位埋深15~20m, 单井涌水量100~1000m3/d。水化学类型一般为HCO3-Ca型,pH值 7.1~8.2,溶解性总固体一般小于1.0g/L。

目标区地下水为松散岩类孔隙水,赋存于第四系及新近系孔隙含水层组之中。钻孔施工期间测得场地稳定水位埋深在1.00m ~1.60m, 高程为11.44~13.31m,水位呈季节性变化,年度变化幅度为2.00m左 右。

4.2 目标区场地勘测与土层结构

按照本次工作在目标区工作范围内的场地及附近共布置13个控制性钻孔,钻孔间距不超过700m,钻孔深度为50~80m,各钻孔终孔 深度处的土层剪切波速值均超过500m/s,满足《工程场地地震安全性评价》(GB17741-2005)和《区域性地震安全性评价工作大纲(试行)》 (中震防函〔2019〕21号)中的相关规定和要求,为目标区场地地震 工程地质条件获得提供了基础数据,图4.2-1为本次布置钻孔平面分布 图,各控制性钻孔基本情况见表4.2-1。图4.2-2为目标区13个钻孔剪 切波速500m/s等深线图。

序号	钻孔编号	经度/°	纬度/。	是否测波速	终孔深度/m	终孔处波速值/m s ⁻¹
1	ZK1	118.924	32.874	是	56	524.25
2	ZK2	118.928	32.874	是	53	516.00
3	ZK3	118.924	32.871	是	60	521.77
4	ZK4	118.928	32.871	是	60	515.60
5	ZK5	118.924	32.868	是	50	510.23
6	ZK6	118.929	32.868	是	80	540.30
7	ZK7	118.924	32.864	是	55	523.40
8	ZK8	118.929	32.865	是	78	534.00
9	ZK9	118.927	32.861	是	60	521.09
10	ZK10	118.931	32.863	是	55	520.38
11	ZK11	118.931	32.859	是	55	514.11
12	ZK12	118.933	32.858	是	68	522.00
13	ZK13	118.935	32.861	是	60	507.02

表 4.2-1 场地控制性钻孔基本情况表

图4.2-2 场地钻孔剪切波速500m/s深度分布图(等值线数字单位为m)

经过对现场13个钻孔的资料对比分析可知,在地层的层位深度、 厚度、地层岩性及剪切波速分布特征一致性较高,场地的地层分布由 上至下的主要特征如下:

①填土层(Q4):全场地分布;该岩土层钻孔揭露的一般厚度0.50~ 3.10米,平均厚度0.97米;钻孔揭露的层顶面标高13.04米~14.74米, 平均标高13.99米。灰色,松散,湿。含植物根。局部表层含建筑垃 圾及生活垃圾。

②粉质粘土层(Q₃): 全场地分布; 该岩土层钻孔揭露的一般厚度
17.10~39.70米, 平均厚度26.22米; 钻孔揭露的层顶面埋深0.50米~
3.10米, 平均埋深0.97米; 钻孔揭露的层顶面标高10.70米~14.24米,

平均标高13.02米。灰黄、褐黄色,可塑~硬塑,湿,干强度中等, 中等韧性,摇振反应无,稍有光泽。夹钙质结核及Fe、Mn结核。

③-1粉细砂层(Q³):局部分布,仅在第ZK1,ZK2,ZK3,ZK4, ZK5,ZK8,ZK10,ZK11,ZK12号孔一带可见;该岩土层钻孔揭露 的一般厚度5.00~26.10米,平均厚度11.31米;钻孔揭露的层顶面埋 深17.60米~32.00米,平均埋深26.47米;钻孔揭露的层顶面标高-17.76 米~-3.09米,平均标高-12.59米。黄褐色,中密~密实,饱和,干强 度低,低韧性,摇振反应迅速,无光泽。颗粒均匀,含石英云母。

③-2中粗砂层(Q₃):局部分布,仅在第ZK6,ZK7,ZK9,ZK13 号孔一带可见;该岩土层钻孔揭露的一般厚度1.80~24.50米,平均厚 度12.40米;钻孔揭露的层顶面埋深20.00米~40.20米,平均埋深28.80 米;钻孔揭露的层顶面标高-25.63米~-5.26米,平均标高-14.54米。 黄褐色,中密~密实,饱和,干强度低,低韧性,摇振反应迅速,无 光泽。分选性较差,含石英云母。

④粘土层(Q₃):局部分布,仅在第ZK2,ZK7,ZK8,ZK10,ZK11, ZK12,ZK13号孔一带可见;该岩土层钻孔揭露的一般厚度3.00~19.30 米,平均厚度10.23米;钻孔揭露的层顶面埋深33.60米~44.00米,平 均埋深40.77米;钻孔揭露的层顶面标高-29.76米~-20.50米,平均标 高-26.87米。灰黄、灰白色,硬塑,湿,干强度高,高韧性,摇振反 应无,稍有光泽。

⑤-1全风化泥岩层(E):全场地分布;该岩土层钻孔揭露的一般厚度5.00~42.90米,平均厚度16.20米;钻孔揭露的层顶面埋深30.00米~63.00米,平均埋深44.34米;钻孔揭露的层顶面标高-48.49米~-16.96米,平均标高-30.35米。灰白、红褐色,全风化。岩芯呈土状、短柱状,泥质结构,块状构造。原岩结构已破坏,遇水易软化分解,锤击易碎。

⑤-2中风化泥岩层(E): 全场地分布,仅在第ZK8号孔一带揭露; 该岩土层钻孔揭露的一般厚度4.00~4.00米,平均厚度4.00米; 钻孔 揭露的层顶面埋深74.00米~74.00米,平均埋深74.00米; 钻孔揭露的 层顶面标高-59.98米~-59.98米,平均标高-59.98米。灰白、暗红色, 中风化。岩体较完整,岩芯多呈柱状,少量碎块状,泥质结构。

场地13个控制钻孔柱状图详见图4.2-3至图4.2-15,图4.1-16至图 4.1-20为4条代表性的工程地质剖面图。各剖面线的钻孔信息如下:

1—1'线: ZK7—ZK8—ZK10—ZK13

- 2—2'线: ZK7—ZK5—ZK3—ZK1
- 3—3'线: ZK2—ZK4—ZK6—ZK8—ZK10—ZK11—ZK12
- 4—4'线: ZK7—ZK5—ZK4—ZK2
- 5—5'线: ZK7—ZK9—ZK11—ZK12

工程名	R称	天长市	化工集	中区区	域性地震安	全性评价						
钻孔编	晶号	ZK1		坐	X: 3640	602.70	勘察单位	安徽省煤Ⅱ	地质	局物探测量队		
孔口杨	「高	13.04	1	m 标	Y: 6795	517.34	钻孔深度	60.00	m	稳定水位	1.60	m
地及	层	层底	层底	分旦	柱				采	标准贯入	取 样	
质 成 时		标	深	厚	状图	岩	土 描	述	取家	击 数	取样编号) 备 注
代因	序	局 (m)	度 (m)	度 (m)	1:300				(%)	深 度(m)	深度(m)	
Q al+pl	0	-11.96	25. 00	24. 50		填土: 灰色 局部表层含 粉质粘土: 翼,湿,干 振反应无, FeMn结核。	大松散,湿。 注建筑垃圾及生 次黄、褐黄色中 强度中等,中 稍有光泽。夹	含植物根。 活垃圾。 可塑~硬 硬 师 质 结 核 及				
Q ^{al+pl} ₃	3-1	-16.96	30.00	5.00	f-x	粉细砂: 黄 和, 干强度 速, 无光泽	〔褐色,中密~ 〔低,低韧性, 〔1〕、颗粒均匀,	密实,饱 摇振反应迅 含石英云				
Е	6-1	-46.96	60, 00	30.00		全风化泥岩 化。岩芯呈 构,块状构 水易软化分	☆白、红褐 大士状、短柱状 50造。原岩结构 解,锤击易碎	色, 全风 , 泥质结 已破坏, 遇			3 31. 20-31. 40	

ZK1钻 孔 柱 状 图

图 4.2-3 ZK1 钻孔柱状图

ZK2钻孔柱状图

钻孔编号 ZK2 坐 X: 3640656.61 勘察单位 安徽省煤田地质局物探测量队 孔口标高 13.10 m 标 Y: 679931.22 钻孔深度 53.00 m 稳定水位 1.60 m 地及成曲 层 层 分 柱 采 塚北貴人 取 样	1
孔口标高 13.10 m 标 Y: 679931.22 钻孔深度 53.00 m 稳定水位 1.60 m 地及原常 层 层 分 柱 采 标准贯入 取 样	1
$\mathfrak{w}_{\mathcal{D}}$ \mathcal{R} \mathcal{R} \mathcal{H} \mathcal{R}	
$m_{\mathcal{M}}$ $m_{\mathcal{K}}$ \mathcal{F} \mathcal{B} \mathcal{A} \mathcal{L} $m_{\mathcal{M}}$ \mathbf{x} <	备注
Q 1 </td <td></td>	
Q3 ② -12.50 25.60 24.90 Qal+pl Qal+pl Qal+pl Qal+pl <t< td=""><td></td></t<>	
Q al+pl Q al+pl ④ -23.90 37.00 3.40 粘土: 灰白色,硬塑,湿,干 强度高,高韧性,摇振反应无,稍有 光泽。	
E ()-1 -39.90 53.00 16.00	
制図、ci え by yth、 Zeeter chr by オネル	
1111111111111111111111111111111111111	

ZK3钻	孔	柱	状	冬

工程名	不称	天长市	化工集	4XÞ	(域性地震安	全性评价	LANDS AN ANNAL					
钻孔练	扇号	ZK3		실	<u>∧</u> X: 3640	0281.18	勘察单位	安徽省煤田	地质	局物探测量队		
孔口标	示高	14.24	4	m 🖡	^к Y: 6796	646.04	钻孔深度	56.00	m	稳定水位	1.30	m
地质时代	层序	层底标高	层底深度	分层厚度	柱 状 图 1:300	岩	土 描	述	采取率 (%)	标准贯入 击 数 深 度(m)	取 样 取样编号 深 度(m)	备注
$Q_{3}^{\frac{1}{2}}$	2 2	(m) 13.74 -13.56	(m) 0.50 27, 80	27. 30		填土:灰色局部表层含粉质粘土: 塑,湿,干 振反应无, FeMn结核。	色,松散,湿。 含建筑垃圾及生 安黄、褐黄色 子强度中等,斗 稍有光泽。身	含植物根。 :活垃圾。 "等韧性,可塑~硬摇 "等质结核及		<u>珠 度(m)</u>	<u> </u>	
Q ^{al+pl}	③-1	-18,76	33, 00	5, 20	f-x	粉细砂: 貞 和, 干强度 速, 无光泽	黄褐色,中密~ 复低,低韧性, 译。颗粒均匀,	密实,饱 摇振反应迅 含石英云				
E	6-1	-41.76	56.00	23.00		母。 全风化泥岩 化。岩芯玉 构,块状构 水易软化5	告, 灰白、红褐 昆土状、短柱划 勾造。原岩结构 分解, 锤击易码	5色, 全风 , 泥质结]己破坏, 遇 ⁽ 。			4 55.80-56.00	
		制图:	将五		校对	: Johnsh	审核	发:武益射				

ZK4钻	孔	柱	状	冬
			~ -	

工程名	R称	天长市	化工集	中区	又均	或性地震安	全性评价						
钻孔编	高号	ZK4			坐	X: 3640	231.39	勘察单位	安徽省煤□	1地质/	司物探测量队		
孔口板	示高	14.2	7	m	标	Y: 6799	96.39	钻孔深度	60.00	m	稳定水位	1.40	m
地质时代	层序	层底标高(m)	层底深度	分层厚度。)	柱 状 图 1:300	岩	土 描	述	采取率 (%)	标准贯入 击 数 深 度(m)	取 样 取样编号 深 度(m)	备 注
Q ^{al+pl}	0	(m) 13.27	(m) 1.00 27,20	(m 1.0	20		填土: 灰色 局部表层含 發质粘土: 干 振反应无, FeMn结核。	大松散,湿。 建筑垃圾及生 一强度、褐黄色中 稍有光泽。夹	含植物根。 活垃圾。 可塑~硬握 倾质结核及		(木) 文(11)	<u>1</u> 5.00-5.20	
Q ^{al+pl} ₃	3-1	-22.53	36. 80	9.6	0	f-x	粉细砂: 黄 和, 干强度 速, 无光泽 母。	就褐色, 中密∼ ₹低, 低初性, 差。颗粒均匀,	密实,饱 摇振反应迅 含石英云				
Е	(Q-1	-45 7%	60.00	23.4	20	• 	全风化泥岩 化。岩芯呈 构,块状构 水易软化分	:: 灰白、红褐 土状、短柱状 远。原岩结构 解,锤击易碎	色, 全风 , 泥质结 已破坏, 遇 。			<u>4</u> 41. 00-41. 20	
Ц	(5)-1	-45.73	60.00	23.2	20				(14 M-171)				

图 4.2-6 ZK4 钻孔柱状图

ZK5钻孔柱状图

工程名	R称	天长市	化工集	中区	(又b	或性地震安	全性评价							
钻孔绯	扇号	ZK5			坐	X: 3639	926. 52	勘察单位	安徽省煤田	地质	局物探	测量队		
孔口核	示高	14.34	4	m	标	Y: 6796	20. 85	钻孔深度	50.00	m	稳定	主水位	1.60	m
地质时代	层序	层底标高	层底深度	う 月 月 月	子 昙享度、	柱 状 图	岩	土 描	述	采取率(1)	标准击	惯入 数 度(m)	取 样 取样编号 深 度(r	备 注
R ^{ml} Q ^{al+pl} Q ^{al+pl}	序 ① ②	(m) 12. 84 -14. 26	(m) 1, 50 28, 60	(n 1. 27.	<u>10</u>	1:300	填土:灰色 局部表层含 粉质粘土: ¹ 撮反应无, FeMn结核。	6,松散,湿。 含建筑垃圾及生 → 公理度中等,中 稍有光泽。夹	含植物根。 活垃圾。 可韧性, 每一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		深	度(m)	深度(m 5.80-6.00	
Q $^{\rm al+pl}_{3}$	3-1	-23.66	38.00	9.	40	f-x	粉细砂: 黄 和,干强度 速,无光泽 母。	袁褐色,中密~ ₹低,低韧性, 译。颗粒均匀,	密实, 饱 摇振反应迅 含石英云					
E	5-1	-35.66	50.00	12.	00		全风化泥岩 化。岩芯呈 构,块状构 水易软化分	5: 灰白、红褐 4±状、短柱状 9造。原岩结构 ♪解,锤击易碎	色, 全风 , 泥质结 已破坏, 遇 。					
L	1	制图:	财益			校对	: ²⁰¹⁴ 图 4 2 7	审核 7K5 5	8: 武委射 5-21 本主小子	凤			L	

ZK6钻孔柱状图

工程名	R称	天长市	化工集	中区	[X]	或性地震安	全性评价								
钻孔练	南号	ZK6			坐	X: 3639	990. 53	勘察单位	安徽省煤口]地质)	局物核	深测量队	(
孔口杉	下高	13. 9	2	m	标	Y: 6801	49. 93	钻孔深度	80.00	m	稳定	官水位	1. 4	40	m
地及	层	层底	层底	5	}	柱				采	标准	佳贯入	取	样	
质 成 时 四		标	深庭	/2 月	1	状图	岩	土措	述	取率	击	数	取柞	羊编号	备 注
代四	序	(m)	度 (m)	/3 (n	ź 1)	1:400				(%)	深	度(m)	深	度(m)	
v ₄	1	11, 92	2.00	2.	00	\rightarrow	填土: 灰仓 局部表层含	白,松散,湿 含建筑垃圾及	,含植物根。 生活垃圾。						
						1/1/									
						1/1/	8								
						(. ///.							10.8	2	
						1/1/,	粉质粘土: 塑,湿,引	灰黄、褐黄 F强度中等,	色,可塑~硬 中等韧性,摇						
						1/1/	振反应无, Follo结核	稍有光泽。	夹钙质结核及						
						:///	T.GWITED 1X .								
					Ì	1/1/,									
${\rm Q}_{3}^{al+pl}$	2	-12,48	26.40	24.	40	11/	8								
							. La Martina de	bie A strate	rder eden lafen						
						7-0	中租砂: 勇和, 干强度	〔褐也,甲密 〕低,低韧性	~密实, 饱, 摇振反应迅						
[at]							速,无光泽 母。	译。分选性较	差,含石英云						
$Q_3^{a_1+p_1}$	3-2	-23.18	37.10	10.	70										
							全风化泥岩	告: 灰白、红	褐色,全风						
							化。岩芯5 构,块状构	已土状、短柱 构造。原岩结	伏,泥质结 肉已破坏,遇						
							水易软化分	}解,锤击易	啐。						
Е	5-1	-66.08	80.00	42.	90										
		制图:	林	ž.		校对	John .	1- 审	核: 武森斯						
							图4.2-8	ZK6	钻孔柱状	图					

ZK7钻孔柱状图

工程名	R称	天长市	化工集	中区		或性地震安	全性评价	<i>h</i>								
钻孔纲	扇号	ZK7			坐	X: 3639	540.90	勘察单	包位	安徽省煤田	地质月	员物书	^案 测量队			
孔口林	示高	14.5	7	m	标	Y: 6795	33.17	钻孔淡	R度	56.00	m	稳定	宦水位	1.6	50	m
地及成时	层	层底标喜	层底深度	5 月 月	个层享的	柱状图	岩	土	拙	述	采取率	标准击	佳贯入 数	取 取 料	样	备注
代山	序	(m)	(m)	(1	z n)	1:300			16000		(%)	深	度(m)	深	度(m)	
Q al+pl			40.20	- 0.	70		填土: 灰色 局部表层含 粉塑,湿,干 下eMn结核。	 大建筑 大建筑 大建筑 大学强利 大中 大中 大中 	湿及 及及	含活垃圾。 可物根。 可物板。 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一						
α ₃ Ω ^{al+pl}	(2) (02)	-25.63	40.20	39.	· 70		中和砂, 黄	福色,山	□密~	密实, 饱	-					
^a 3	0-2	-41,40	42,00	1.	00	1////	和,干强度 速,无光泽	乏低,低制 圣。分选也		摇振反应迅 ,含石英云	\square					
E	@ (5-1	-30.43	45. 00	3.	. 00		母。 粘土: 灰黄 温度高,高 光 Q. 化泥岩 、 化。岩芯 标构,块状构 水易软化分	度、灰白色 医韧性, 推 言: 灰白、推 言: 太天、 影 告 上状、 影 之 上 、 原 制 曲 , 一	色, 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	塑,湿,干 应无,稍有 色,全风 ,泥质结 已破坏,遇。						
		制图:	并在			校对	· johnt-		宙核	: 司孟树						
							图 4.2-9	Zł	く7 も	占孔柱状	图					

ZK8钻	孔	柱	状	冬
		100 Contraction 100		

工程名	R称	天长市	化工集	中区区	域性地震安	全性评价						
钻孔练	副号	ZK8		坐	X: 3639	9662.74	勘察单位	安徽省煤田	地质	局物探测量队		
孔口柞	「高	14. 0	2	m 标	Y: 6801	31.54	钻孔深度	78.00	m	稳定水位	1.50	m
地及	层	层底	层底	分日	柱				采	标准贯入	取 样	
质 成 时 四		标	深	厚	状图	岩	土 描	述	取率	击 数	取样编号	备 注
代四	序	局 (m)	度 (m)	度 (m)	1:400				(%)	深 度(m)	深 度(m)	
× 4	U.	10.02	0. 00	0. 00	(1/1)	填土: 灰色 局部表层含	1,松散,湿。 3建筑垃圾及生	含植物根。				
					11/1	1					1	
					1/1/						5.80-6.00	
					1/1/							
					[1]]]		七歩 祖恭名	चा भिष्ठ - दबा				
					1/1/	初页相工: 塑,湿,干	· 强度中等,中	等韧性,摇				
					1/1/	振反应无, FeMn结核。	稍有光泽。夹	钙质结核及				
					1/1/							
					1/1/							
o al+pl					1/1/							
v ₃	2	-16.38	30.40	29.90	11.1							
						粉细砂: 黄	黄褐色, 中密~	密实,饱				
o al+pl					•	和, 十强度 速, 无光泽	č低,低初性, 译。颗粒均匀,	摇振反应迅			3	
Q 3	3-1	-24.88	38.90	8.50	7777	丹。						
						粘土:灰黄 强度高,高	責、灰白色,硬 G韧性,摇振反	¹ 塑,湿,干 应无,稍有				
						光泽。						
Q_3^{al+pl}	4)	-42.98	57.00	18.10								
						-						
						全风化泥岩 化。岩芯呈	5: 灰白、红褐 呈土状、短柱状	也, 全风 , 泥质结				
					# 	构,块状构	り造。原岩结构 ▶解、锤击易™	已破坏,遇				
						JUN MANUL	//df) k± L1 ⊗/ k†					
Е	5-1	-59.98	74.00	17.00								
E				100.000		中风化泥岩: 完整,岩芯多	灰白、暗红色,中 呈柱状,少量碎り	风化。岩体较 5状,泥质结构。				
	(5)-2	-63.98	78.00	4.00		钻孔岩芯采取 ~85%。	率在85%以上,差	石RQD指标为70				
		制图:	联系		校对	: Johns	审核	E: 武益射				

图 4.2-10 ZK8 钻孔柱状图

ZK9钻孔柱状图

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	工程名	、 称	天长市	化工集	中区	[X]	或性地震安	全性评价								
引口時高 14.74 m 林 Y: 679946.79 依孔波皮 60.00 m 税定水位 1.50 m 地皮皮 (1) 屋 屋 皮皮 (1) ク 技 日 <td>钻孔绯</td> <td>副号</td> <td>ZK9</td> <td></td> <td></td> <td>坐</td> <td>X: 3639</td> <td>011.01</td> <td>勘察单位</td> <td>安徽省煤田</td> <td>地质</td> <td>局物损</td> <td>^案测量队</td> <td></td> <td></td> <td></td>	钻孔绯	副号	ZK9			坐	X: 3639	011.01	勘察单位	安徽省煤田	地质	局物损	^案 测量队			
max R R R R R R Mathematical Stress Mathematical Stress R Mathematical Stress Mathe	孔口板	示高	14. 7	4	m	标	Y: 6799	46. 79	钻孔深度	60.00	m	稳知	宦水位	1.	50	m
町市 座 浜 浜 浜 浜 採 田 近 田 単 日 単 日 単 日 <td>地及</td> <td>层</td> <td>层底</td> <td>层底</td> <td>5</td> <td>}</td> <td>柱</td> <td></td> <td></td> <td></td> <td>采</td> <td>标准</td> <td>售贯入</td> <td>取</td> <td>样</td> <td></td>	地及	层	层底	层底	5	}	柱				采	标准	售贯入	取	样	
(日) (平) (日) (日) </td <td>质 成 时</td> <td></td> <td>标</td> <td>深</td> <td>/2</td> <td>Ĕ.</td> <td>状图</td> <td>岩</td> <td>土 描</td> <td>述</td> <td>取率</td> <td>击</td> <td>数</td> <td>取材</td> <td>羊编号</td> <td>▲ 注</td>	质 成 时		标	深	/2	Ĕ.	状图	岩	土 描	述	取率	击	数	取材	羊编号	▲ 注
A1 D 13.3 0.30 0.30 単土: 灰色、松松、器。含柏物积. 局部表层含建筑垃圾及生活垃圾。 日本 日本 人、本 日本 大麦、、和香沙瓜、麦、香柏物积. 局部表层含建筑垃圾及生活垃圾。 日 日本 日本 大麦、、和香沙瓜、麦、香柏物积. 局部表层含建筑垃圾及生活垃圾。 日 日 日 日本 日本 日本 日 日 日 日 日 日本 日 日 日 日 日 日 日 日 日 <td>代山</td> <td>序</td> <td>局 (m)</td> <td>度(11)</td> <td>月 (n</td> <td>ŧ D</td> <td>1:300</td> <td></td> <td></td> <td></td> <td>(%)</td> <td>深</td> <td>度(m)</td> <td>深</td> <td>度(m)</td> <td></td>	代山	序	局 (m)	度(11)	月 (n	ŧ D	1:300				(%)	深	度(m)	深	度(m)	
Q al *P1 Q -5.05 20.00 19.50 P al *P1 Q -2.05 44.50 24.50 P al *P1 Q al *P1 P al *P1 20.50 50.50 P al *P1 P al *P1 P al *P1 20.50 50.50 P al *P1 P al *P1 P al *P1 20.50 50.50	W 4	<u>u</u>	14, 24	0.50	0.	50	77/7	填土: 灰色	,松散,湿。	含植物根。						
-3 ② -5.35 20.00 19.30	Q ^{al+pl}		5.00		10			粉质粘土: 塑,湿,干 振反应无, FeMn结核。	/建筑垃圾及生 灰黄、褐黄色 强度中等, 中 稍有光泽。夹	2.活垃圾。 1,可塑~硬 4等韧性,摇 5.钙质结核及						
Q al * pl (a) - 2 - 29.76 14.50 24.50 + 相盼: 黄褐色, 中密~密实、饱 和. 干强度低. 低韧性, 播振反应迅速 4 - 25.80-26.00 - 25.80-26.00 - 25.80-20.00 - 25.80-26.00 - 25.80-20.00	W 3	2	-5.26	20.00	19.	50	<u></u>				_					
E ③-1 -45.26 60.00 15.50 期際: 計五 校对: 조姆 百榜: 孔玉树	Q ^{al+pl} 3	3-2	-29. 76	44. 50	24.	50	z-c z-c	中粗砂: 黄 和, 干强度 速, 无光泽 母。	褐色,中密~ 低,低切性, 。分选性较差	密实, 饱 摇振反应迅 , 含石英云				23.1	3 0-23, 30 4 0-26, 00	
	E	(§-1	-45.26	60. 00	15.	50	· · · · · · · · · · · · · · · · · · ·	全风化泥岩 化。岩芯呈 构,块状构 水易软化分	÷ 灰白、红褐 →土状、短柱状 J造。原岩结构 解,锤击易码	6色,全风 六,泥质结 日已破坏,遇 ^x 。				50.8	5 0-51.00	
		01	制图.	31 A	. 0.		 校对	: Joent	宙相	5: 武王树		S			, i i i i i i i i i i i i i i i i i i i	1
			net rat :	18 17.			יא עדי	夏1011	71/04	בי ייי אייי בי דיין בי איי	一团					

ZK10钻	孔	柱	状	冬

工程名	名称	天长市	化工集	中区区	域性地震安	天全性评价						
钻孔练	南号	ZK10		4	🛓 X: 3639	9368.66	勘察单位	安徽省煤Ⅱ	地质)	局物探测量队		
孔口标	高	13.10)	m t	Ř Y: 6803	263. 69	钻孔深度	55.00	m	稳定水位	1.10	m
地质时代	层序	层底标高	层底深度	分层厚度	柱 状 图 1:300	岩	土 描	述	采取率 (%)	标准贯入 击 数 深 度(m)	取 样 取样编号 深 度(m)	备注
Q ^{al+pl}	0	-12.60	24.00	<u>0.5</u> 0		填土: 灰仓 局部表层含 勞质粘土: 塑, 足板 板 板 、	5,松散,湿。 含建筑垃圾及生 次黄、褐黄色 强度屮等,斗 稍有光泽。夹	含植物根。 活垃圾。 ,可塑~硬 等韧性,摇 药质结核及				
Q ^{al+pl} 3	3-1	-28.90	42.00	18.00	• f-x	粉细砂: 身 和,干强度 速,无光注 母。	資褐色, 中密~ 夏低, 低韧性, 颗粒均匀,	密实, 饱 摇振反应迅 含石英云			2 24. 10-24. 30	
Q ^{al+pl}	4	-36.90	50.00	8.00		粘土: 灰貞 强度高,高 光泽。	責、灰白色,碩 哥韧性,摇振反	塑,湿,干 应无,稍有				
E	5-1	-41.90	55.00	5.00		全风化泥岩 化。岩芯5 构,块状构 水易软化5	告: 灰白、红袖 呈土状、短柱∜ 勾造。原岩结构 計解,锤击易码	8色, 全风 (, 泥质结)已破坏, 遇 ()。				
		制肉.	14 A.		校天	t. Zrenk-	宙相	5. 武孟州				

ZK11钻 孔 柱 状 图

工程名	R称	天长市	化工集	中区		或性地震安	全性评价									
钻孔练	高号	ZK11			坐	X: 3639	029.18	勘察单	包位	安徽省煤田	地质	局物书	刷量队			
孔口标	示高	14.24	4	m	标	Y: 6802	59. 09	钻孔淡	R度	55.00	m	稳定	 	1.	00	m
地质时代	层	层底标高	层底深度	ケ長馬		柱 状 图	岩	土	描	述	采取率	标准	主贯入 数	取取	4 洋编号	备 注
Q ^{al+pl}	序 ① ②	(m) 13.44	12 (m) 0.30	31.	20 20	1:300	填土: 灰色 局部表层含 粉质粘土: 塑,湿、干 振反应无, FeMn结核。	√、松散, 注建 → 公式 立式 数 支 、 中 二 、 十 二 、 十 二 、 十 二 、 十 二 、 十 二 、 十 二 、 十 二 、 十 二 、 十 二 、 十 二 、 一 、 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 、 、 、 、 、 、 、 、 、 、 一 、 、 、 、 、 、 、 、 、 、 、 、 、	湿。 及及生 蜀穿, 夹 黄色, 夹	含植物根。 活垃圾。 可塑一~硬 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	(%)	深	度 (m)	深.7.8	度 (m) 1 0-8.00	
Q ^{al+pl} ₃	3-1	-29.76	44.00	12.	00	• f-x	粉细砂: 黄 和, 干强度 速, 无光泽 母。	貢褐色,∟ 夏低,低書 ≧。颗粒±	中密~ 初性, 均匀,	密实, 饱 摇振反应迅 含石英云				34.8	<u>3</u> 0-35. 00	
${\sf Q}_3^{{ m al+pl}}$	4	-35.76	50.00	6.	00		粘土: 灰黄 强度高,高 光泽。	貴、灰白仓 岳韧性,括	色,硬 醫振反	塑,湿,干 应无,稍有						
E	(5)-1	-40.76	55.00	5.	00		全风化泥岩 化。岩芯与 构,块状构 水易软化分	⋮ 灰白、 上土状、矩 门造。原 計解, 锤 計解, 锤	红褐 豆柱状 岩结构 岳易碎	色, 全风 , 泥质结 已破坏, 遇 。						
		制图.	财益			校对	. Zerek. 14.2-13	71	审核 (114	: _{武益制} 钻孔林北	「図					

ZK12钻孔柱状图

工程名	R称	天长市	化工集	中区	区均	或性地震安	全性评价						
钻孔纲	高号	ZK12			坐	X: 3638	869.61	勘察单位	安徽省煤田	地质	司物探测量队		
孔口柞	下高	14.5	1	m	标	Y: 6805	18.69	钻孔深度	68.00	m	稳定水位	1.20	m
地质时代	层 序	层底标高侧	层底深度则	ケ 長 馬 馬 ぼ (1)	と見てもし	柱 状 图 1:350	岩	土 描	述	采取率 (%)	标准贯入 击 数 深 度(m)	取 样 取样编号 深 度(m)	备 注
Q ^{al+pl}		14.01	0.50	0.	aU -		填土: 灰色 局部表层含 粉质粘土: 塑,湿,干 振反应无, FeMn结核。	点,松散,湿。 注建筑垃圾及生 次黄、褐黄色 一强度中等,中 稍有光泽。夹	含植物根。 活垃圾。 , 可塑~硬 每韧性, 摇 例质结核及				
Q ^{al+pl} 3	3-1	-29.19	43. 70	26.	10	f-x f-x	粉细砂: 黄 和, 干强度 速, 无光润 母。	就褐色,中密~ f(低,低韧性, é。颗粒均匀,	密实, 饱 摇振反应迅 含石英云			<u>3</u> 32. 00–32. 20	
Q ^{al+pl}	4	-48.49	63. 00	19.	30		粘土: 灰黄 强度高,高 光泽。	武、灰白色,硬 5 韧性,摇振反	塑,湿,干 应无,稍有				
E	<u>(5)-1</u>	-53.49	68.00	5.	00	· · · · · ·	全风化泥岩 化。岩芯呈 构,块状构 水易软化分	告: 灰白、红褐 上状、短柱状 D造。原岩结构 计解, 锤击易碎	色, 全风 , 泥质结 已破坏, 遇				
		曲図.	财养			校社	· June	宙林	8. 武盖州	l			

图4.2-14 ZK12钻孔柱状图

工程名	称	天长市	化工集	中区	[X]	或性地震安	全性评价						
钻孔编	局号	ZK13			坐	X: 3639	162.22	勘察单位	安徽省煤□]地质)	局物探测量队		
孔口枝	高	13.80)	m	标	Y: 6806	27.12	钻孔深度	60.00	m	稳定水位	1.50	m
地质时代	层序	层底标高	层底深度	<u> </u>	イミ 耳 ぎい	柱 状 图 1:300	岩	土 描	述	采取率(%)	标准贯入 击 数 深 度(m)	取 样 取样编号 深 度(m)	备注
Q ₁ ^{m1}	1	10. 70	3. 10	3.	10		填土:灰仓 局部表层含	色,松散,湿。 含建筑垃圾及生	含植物根。 活垃圾。				
Q ^{al+pl} ₃	2	-14.80	28, 60	25.	50		粉质粘土: 塑,湿,泪 捩反应无, FeMn结核。	灰黄、褐黄 在 千强度中等,斗 稍有光泽。夹	, 可塑~硬 等韧性, 摇 何质结核及				
Q ^{al+pl} 3	3-2	-27.40	41. 20	12.	60	.z-c	中粗砂: 黄 和,干强则 速,无光泽 母。	查褐色,中密~ 定低,低韧性, 承。分选性较差	密实, 饱 摇振反应迅 , 含石英云				
Q ^{al+pl}	۲	-41 20	55.00	12	80		粘土: 灰貢 强度高, 福 光泽。	_貨 、灰白色,碩 寄韧性,摇振反	塑,湿,干 应无,稍有				
E	(5)-1	-46.20	60.00	5.	00		全风化泥岩 化。岩芯5 构,块状构 水易软化5	告: 灰白、红襦 呈土状、短柱状 勾造。原岩结构 <u>计解, 锤击易</u> 碎	色, 全风 , 泥质结 已破坏, 遇				

ZK13钻孔柱状图

图4.2-15 ZK13钻孔柱状图

图4.2-16 1-1'线工程地质剖面图

图4.2-17 2-2'线工程地质剖面图

图4.2-18 3-3'线工程地质剖面图

第四章 目标区地震工程地质条件勘测及断层勘查

图4.2-19 4-4'线工程地质剖面图

图4.2-20 5-5'线工程地质剖面图

4.3 目标区场地剪切波速与场地类别划分

4.3.1 目标区场地土层剪切波速

根据国家标准《工程场地地震安全性评价》(GB17741-2005) 和《区域性地震安全性评价工作大纲(试行)》(中震防函(2019) 21号)的相关要求,需要获取13个控制性钻孔的土层剪切波速资料。 本次对现场钻探的13个钻孔均进行了剪切波速原位测试,测试采用单 孔层检法,同时对现场测试的剪切波速资料进行了整理。

本次波速测试工作严格按照《地基动力特性测试规范》(GB/T 50269-97)进行,采用的是ZD18综合式波速测试仪。该测井系统工作时,将悬挂式探头(即振源和检波器)放入孔中,用孔中的泥浆液作为震源、检波器与井壁的耦合介质。震源为水平激振(垂直井壁)激发,产生S波沿井壁地层传播,由两个相距1m的检波器接收沿井壁传播的S波振动信号,并把S波振动信号转换成电信号,通过电缆由主机记录显示存储。主机对信号进行数据处理后采用两道互相关分析方法,自动计算S波在两道检波器间传播的时间差,从而计算出两道间的S波传播速度。测试顺序自下而上逐点进行,测点深度间隔1.0m。工作方法见示意图4.3-1。本次工作采用0.05ms采样间隔,2048点记录长度,测试点间距1m。所采集的原始记录全部合格,S波清晰可靠,并进行了现场重复测试,确保原始资料准确、可靠。

图 4.3-1 工作方法示意图

目标区工作范围场地内13个控制性钻孔的剪切波速测试成果见 图4.3-2至图4.3-14(图中钻孔深度单位为m,等效速度单位为m/s)。

工程	名称	天t	长化]	τØ	区域性	地震安全	è性i	平价项目	钻孔编	号	ZK	1
钻孔	深度					60			等效速	度	223.1	15
序号	地层名称	高程 (m)	深度 (m)	厚度 (m)	地层描述	地层图例	m 0)	HV曲线 300		m/s	层速度 (m/s)
2	彩质黏土	9.54	3.50	3.00			1 1	X				183.8 9
3	粉质黏土	6.54	6.50	3.00		1/1/1	6.0	1				214.8 2
4	粉质黏土	3.54	9.50	3.00		[].].		Į				226.7 9
5	粉质黏土	0.54	12.50	3.00		1.1.	11.0		}			243.2 9
6	粉质黏土	-2.46	15.50	3.00		////	16.0		(236.5
7	粉质黏土	-5.46	18.50	3.00		<u>////</u>			{			242.9
8	粉质黏土	-8.46	21.50	3.00			21.0					251.4
9	粉质黏土	-11.96	25.00	3.50		[1]]	26.0		Ļ			253.8
10	わ知砂	-13.96	30.00	3.00					γ			305.3
							31.0		F]		411.4
12	全风化泥岩	-21.96	35.00	5.00								7
13	全风化泥岩	-26.96	40.00	5.00			36.0					421.1
							41.0					
14	全风化泥岩	-31.96	45.00	5.00						V		460.3 4
15	全风化泥岩	-36,96	50.00	5.00			46.0			·····/]·		485.1
							51.0			ļ į	.	
16	全风化泥岩	-41.96	55.00	5.00								521.3 4
	A.R. (1)						56.0					522.1
17	全风化泥岩	-46.96	60.00	5.00			60.0					5
				冬	4.3-2	ZK	1波	速测试成	果图			
		1										
工程	名称		天	:长1		と域性地	震女	全性评价	项目	钻孔绯	扁号 2	ZK2
工程 钻孔	名称 .深度		天	:长4	LLKR	×域性地 53	[震安]	全性评价	项目	钻孔纳 等效证	高号 二 東度 2	ZK2 04.66
工程 钻孔	名称 .深度 ^{地层名称}	高程 (m)	天 深度 (m)	长 (m)		幺域性地 53 ^{地层图例}		全性评价」	项目 ^{HV曲线} 300	钻孔纳等效边	副号 2 <u>東度 2</u> 0 ^{m/s} 600	ZK2 04.66 [层速度 (m/s)
工程 钻孔 房	名称 深度 ^{地层名称}	高程 (m) 12.30	天 深度 (m) 0.70	长化 厚度 (m) 0.70		 ✓域性地 53 ^{地层图例} ××××× 			项目 HV曲线 	钻孔纳 等效边	副号 2 <u>東度 2</u> 0 	ZK2 04.66 层速度 (m/s) 1785 182.9
工程 钻孔 	名称 深度 ^{地层名称} 素描+ 粉质黏土	高程 (m) 12.30 9.30	天 深度 (m) 0.70 3.70	厚度 (m) <u>0.70</u> 3.00		 ✓ 域性地 53 地层图例 × × × × 			项目 	钻孔纵 等效返	高号 2 <u>東度 2</u> 	ZK2 04.66 层速度 (m/s) 178.5 182.9 3 178.0
工程 钻孔 	名称 深度 ^{地层名称} 素值+ 粉质黏土	高程 (m) 12.30 9.30 6.30	天 深度 (m) 0.70 3.70 6.70	、长化 厚度 (m) <u>0.70</u> 3.00		 ✓域性地 53 地屬圈例 ×××× 	震女 		项目 HV曲线 	钻孔纳 等效过	高号 2 <u>東度 2</u> 	ZK2 04.66 <u>Eæĝ</u> (m/s) <u>178.5</u> 182.9 3 178.0 0
工程 钻孔 	名称 深度 ^{地层名称} ^{麦值+} 彩质黏土 彩质黏土	高程 (m) 12.30 9.30 6.30 3.30	天 深度 (m) 0.70 3.70 6.70 9.70	厚度 (m) 0.70 3.00 3.00 3.00		< 域性地 53 ^{地层图例}	震女 m 6.0	·全性评价」	项目 	钻孔纵 等效过	高号 2 <u></u> ▲度 2 ¹ 	ZK2 04.66 同志度 (m/s) 178.5 182.9 3 178.0 0 165.8 8
工程 钻孔 	名称 深度 地层名称 <u>表质</u> 书 形质新土 粉质新土 粉质新土	高程 (m) 12.30 9.30 6.30 3.30 0.30	天 (m) 0.70 3.70 6.70 9.70 12.70			< 域性地 53 地层图例 × × × ×	。震女 m 6.0 111.0		项目 HV曲线 	钻孔 <u>纳</u> 等效过	<u>高号 2</u> <u>m/s</u> 	ZK2 04.66 [唐速度 (m/s) 178.5 182.9 3 178.0 0 165.8 8 213.8 8
工程 钻孔 ^{序号} 1 2 3 4 5 6	 名称 深度 地层名称 素植+ 初质黏土 初质黏土 初质黏土 初质黏土 初质黏土 初质黏土 	高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70	天 (m) 0.70 3.70 6.70 9.70 12.70 15.70	、长化 厚度 (m) <u>0.70</u> 3.00 3.00 3.00 3.00		 ✓项性地 53 地层图例 ××××× ××××× ××××× 	。 (長女 6.0 11.0		项目 HV曲线 	钻孔纳 等效过	高号 2 <u>東度 2</u> 	ZK2 04.66 Exer (m/s) 178.5 182.9 3 178.0 0 165.8 8 213.8 8 213.8 8 243.7 7
工程 4 5 6 7	名称 深度 地层名称 <u>要编+</u> 物质黏土 物质黏土 物质黏土 物质黏土 物质黏土 物质黏土 物质黏土	高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -5.70	天 (m) 0.70 3.70 6.70 9.70 12.70 12.70 15.70		地层描述	 ★域性地 billetement x x x x x 	。展安 6.0 111.0		项目 HV曲线 	钻孔4 等效过	高号 2 <u>東度 2</u> 	ZK2 04.66 (m/s) 178.5 182.9 3 178.0 0 165.8 8 213.8 8 243.7 7 259.8
工程	 名称 深度 地层名称 要值+ お原動士 お原動士 お原動士 お原動士 お原動士 お原動士 お原動士 お原動士 お原動士 	高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -5.70	天 (m) 0.70 3.70 6.70 9.70 12.70 15.70 18.70	「原度 (m) <u>0.70</u> 3.00 3.00 3.00 3.00 3.00		< 域性地 53 地圖翻例 × × × × · · · · · · · · · · · · · · · ·	。展安 6.0 11.0		项目 HV曲线 	钻孔4 等效过	<u>扁号 2</u> <u></u>	ZK2 04.66
工程 钻孔 ^{序号} 1 2 3 4 5 6 7 8	名称 深度 地层名称 <u>表植</u> 	高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -5.70 -8.70	天 深度 (m) 0.70 3.70 6.70 9.70 12.70 15.70 15.70 18.70	厚度 (m) 0.70 3.00 3.00 3.00 3.00 3.00 3.00		< 域性地 53 地圖團例 × × × × ×	。辰女 11.0 21.0		项目 HV曲线 	钻孔4 等效证	高号 2 <u>■</u> 度 2 	ZK2 04.66 层速度 (m/s) 178.5 182.9 3 178.0 0 165.8 8 213.8 8 243.7 7 259.8 0 286.9 1
工程	 名称 次度 地层名称 要值十 物质黏土 	高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -5.70 -8.70	天 深度 (m) <u>0.70</u> 3.70 6.70 9.70 12.70 15.70 18.70 21.70	厚度 (m) <u>0.70</u> 3.00 3.00 3.00 3.00 3.00 3.00 3.00		 ★域性地 地圖翻例 ★ × × × × 	震安 m 6.0 11.0 21.0 21.0		项目 HV曲线 	钻孔4 等效过	高号 2 <u>■</u> 皮 21 m/s 600	ZK2 04.66 (m/s) 1728.5 182.9 3 178.0 0 165.8 8 243.7 7 259.8 0 286.9 1 313.7 9
工程 括孔	 名称 次度 地层名称 要值+ 初质軌士 初质軌士 初质軌士 初质軌士 初质軌士 初质軌士 初质軌士 初质軌士 初原軌士 初原軌士 初原軌士 初原軌士 初原軌士 初原軌士 初原軌士 初原軌士 	高程 (m) 12.30 9.30 6.30 3.30 -2.70 -2.70 -5.70 -8.70 -12.60	深度 (m)	厚度 (m) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0		< 域性地 53 地圖明例 × × × × · · · · · · · · · · · · · · · ·	。 一 一 一 一 一 一 一 一 一 一 一 一 一		项目 HV曲线 	钻孔4 等效速	<u>副号 2</u> <u>m/s</u> 600	ZK2 04.66 Fate (m/s) 178.0 178.0 178.0 182.9 3 178.0 0 165.8 8 243.7 7 259.8 0 286.9 1 313.7 9 322.0 0
工程 指孔	 名称 次度 地层名称 変換土 物质黏土 粉质黏土 粉质黏土 粉质黏土 粉质黏土 	高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -5.70 -8.70 -12.60	深度 (m) 0.70 3.70 6.70 9.70 12.70 15.70 21.70 25.60 29.60	厚度 (m) <u>0.70</u> 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.		 ★域性地 地圖翻例 ★ × × × × ★ × × × × ★ × × × × ★ × × × × ★ × × × × ★ × × × × ★ × × × × ★ × × × × ★ × × × × ★ × × × × ★ × × × × 	慶女 m 6.0 11.0 21.0 21.0 21.0 31.0		项目 HV曲线 	钻孔4 等效过	高号 2 <u>東度 2</u> ^{m/s}	ZK2 04.66 Failed (m/s) 1728 5 178.0 165.8 8 243.7 7 259.8 0 286.9 1 313.7 9 322.0 0
工程	 名称 次度 地层名称 要值土 助质黏土 助原黏土 助用砂 	高程 (m) 12.30 9.30 6.30 3.30 -2.70 -2.70 -8.70 -12.60 -16.60	深度 (m) 7.70 0.70 3.70 0.70 3.70 12.70 12.70 15.70 15.70 18.70 21.70 221.70 25.60 23.60 33.60	厚度(m) の 0.70 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00		< 地區開例	慶女 m 6.0 11.0 21.0 21.0 31.0		项目 HV曲线 	钻孔4 等效速	扁号 2 <u>東度 2</u> 	ZK2 04.66 Faither for the factor of the fa
工程 指孔	 名称 次度 地层名称 要項十 助质新士 助原新士 助原新士 助振新士 動振新士 動振和 動振和 動振和 動振和 動振和 動振和 	高隆 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -3.70 -3.70 -12.60 -16.60 -20.60	深度 (m) 3.70 0.70 3.70 12.70 15.70 15.70 21.70 21.70 21.70 23.60 33.60 33.60 37.00	厚度 (m) 0.70 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00		< 域性地 53 地圖團例 × × × × · · · · · · · · · · · · · · · ·	一版 一 一 一 一 一 一 一 一 一 一 一 一 一		项目 HV曲线 	钻孔4 等效过	<u>副号 2</u> <u>■</u> <u>■</u> <u>■</u> <u>■</u> <u>■</u> <u>■</u> <u>■</u> <u>■</u> <u>■</u> <u>■</u>	ZK2 04.66 Failed for the second sec
工程	 名称 次度 地层名称 要值土 助质黏土 助质黏土 助质黏土 助质黏土 助质黏土 助质黏土 动质黏土 动、 动、 动、 政 助、 助、	高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -3.70 -8.70 -12.60 -12.60 -22.60	深度 (m) ····································	厚度 (m)		 · · · · · · · · · · · · · · · · · · ·			项目 HV曲线 	钻孔4 等效速	<u>帚号</u> 21 <u>m/s</u> 	ZK2 04.66 Faits Faits 178.0 179.0 179.
工程	 名称 次度 地层名称 要值+ 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助原靴土 助原靴土 助原靴土 助原靴土 助原靴土 助用砂 靴土 全风化泥岩 	■ 高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -2.70 -12.60 -16.60 -20.60 -24.00 -29.00	深度 (m)	Image: matrix interval Image: matrinterval Image: matrinterval		< 域性地 18周期例 × × × × × · · · · · · · · · ·			项目 HV曲线 		<u>帚号 2</u> <u>■ 「「」 ● 「 ● 「 ● 「 ● 「</u>	ZK2 04.66 Files Files 178.0 0 178.0 0 165.8 8 243.7 7 259.8 243.7 7 259.8 243.7 7 259.8 1 313.7 9 322.0 0 330.2 6 341.6 6 429.0 3 1 2 1 2 2 2 2 2 3 2 2 2 3 2 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
工程	 名称 次度 地层名称 要項十 助原動士 助原動士 助原動士 助原動士 助原動士 助原動士 助原動士 助原動士 助用砂 動士 全风化泥岩 	■ 高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -2.70 -8.70 -12.60 -12.60 -22.000 -22.000	深度 (m) (m) 0.70 3.70 6.70 9.70 12.70 15.70 15.70 21.70 25.60 33.60 33.60 37.00	厚度 (m) 0.70 3.00		< 域性地 53 地圖明例 * * * * * * * * * * * *	一版 女 16.0 11.0 21.0 21.0 31.0 41.0 41.0		项目 HV曲线 300	钻孔纲等效过	高号 2 <u>東度 2</u> ^{m/s} 600	ZK2 04.66 Failed for the second sec
工程	 名称 次度 地层名称 支値士 お原動士 シーム 	高程 (m) 12.30 9.30 6.30 3.30 -2.70 -2.70 -12.60 -12.60 -22.000 -22.000 -22.000 -22.000	深度 (m) 3.70 9.70 3.70 12.70 15.70 18.70 21.70 221.70 33.60 33.60 37.00 42.00 47.00	Free Free 0.70 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 5.00 5.00		 域性地 53 地圖問例 ××××× ×××××× ××××××××××××××××××××××××××××××××××××			项目 HV曲线 	钻孔纲	<u>帚号 2</u> <u>■度 2</u> 	ZK2 04.66 Faits Faits 178.0 178.0 178.0 165.8 8 243.7 7 259.8 243.7 7 259.8 243.7 7 259.8 243.7 7 259.8 330.2 6 341.6 6 429.0 3 449.3 7 6
工程	 名称 次度 地层名称 要值+ 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助质靴土 助原靴土 助原靴土 助原靴土 助原靴土 助原靴土 助用砂 靴 転車 全风化泥岩 会风化泥岩 会风化泥岩 	■ 高程 (m) 12.30 9.30 6.30 3.30 0.30 -2.70 -2.70 -2.70 -12.60 -16.60 -20.60 -24.00 -29.00	深度 (m)	Image Image <th< td=""><td></td><td>< 域性地 53 地圖期例 × × × × · · · · · · · · · · · · · · · ·</td><td>一版 女 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0</td><td></td><td>项目 HV曲线 </td><td>钻孔纲等效过</td><td><u>帚号 2</u> <u>■ 「「」 ● 「</u>」 ● 「</td><td>ZK2 04.66 Faits (m/s) 1728.5 182.9 178.0 0 165.8 8 243.7 7 259.8 243.7 7 259.8 243.7 7 259.8 0 286.9 1 330.2 6 330.2 6 330.2 6 341.6 6 5 5 5 5 5 5 5 5 5 5 5 5 5</td></th<>		< 域性地 53 地圖期例 × × × × · · · · · · · · · · · · · · · ·	一版 女 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0 11.0 16.0		项目 HV曲线 	钻孔纲等效过	<u>帚号 2</u> <u>■ 「「」 ● 「</u> 」 ● 「	ZK2 04.66 Faits (m/s) 1728.5 182.9 178.0 0 165.8 8 243.7 7 259.8 243.7 7 259.8 243.7 7 259.8 0 286.9 1 330.2 6 330.2 6 330.2 6 341.6 6 5 5 5 5 5 5 5 5 5 5 5 5 5
工程	 名称 次度 地层名称 要值+ 助原動士 助原動士 助原動士 助原動士 助原動士 助原動士 助原動士 助原動士 助原動士 助振動士 助振動士 助振動士 助振動士 助振動士 助振動士 勤振動士 シーム <li< td=""><td>高程(m) 12.30 9.30 6.30 3.30 -2.70 -5.70 -5.70 -12.60 -12.60 -22.60 -22.000 -24.00 -34.00</td><td>深度 (m) </td><td>Image Image Image Image 0.70 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 5.00 5.00 5.00 5.00</td><td></td><td> 域性地 53 地圖明例 メメ メ メ メ メ メ メ × メ メ メ メ × メ メ メ メ × メ メ メ × メ メ メ × メ メ × × メ × × × × ×</td><td>一版 m 6.0 11.0 21.0 21.0 21.0 21.0 31.0 36.0 31.0 36.0 51.0 51.0</td><td></td><td>项目 HV曲线 </td><td></td><td><u>帚号 2</u> <u>■ 500</u></td><td>ZK2 04.66 File: (m/s) 1728.5 182.9 3 178.0 0 165.8 243.7 7 7 259.8 0 182.9 1 1313.7 9 322.0 0 330.2 6 341.6 429.0 3 493.7 6 515.4 0</td></li<>	高程(m) 12.30 9.30 6.30 3.30 -2.70 -5.70 -5.70 -12.60 -12.60 -22.60 -22.000 -24.00 -34.00	深度 (m)	Image Image Image Image 0.70 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 5.00 5.00 5.00 5.00		 域性地 53 地圖明例 メメ メ メ メ メ メ メ × メ メ メ メ × メ メ メ メ × メ メ メ × メ メ メ × メ メ × × メ × × × × ×	一版 m 6.0 11.0 21.0 21.0 21.0 21.0 31.0 36.0 31.0 36.0 51.0 51.0		项目 HV曲线 		<u>帚号 2</u> <u>■ 500</u>	ZK2 04.66 File: (m/s) 1728.5 182.9 3 178.0 0 165.8 243.7 7 7 259.8 0 182.9 1 1313.7 9 322.0 0 330.2 6 341.6 429.0 3 493.7 6 515.4 0

图 4.3-3 ZK2 波速测试成果图

工程名称 天长化工区区域性地震安全性评价项目 钻孔编号 ZK3 钻孔深度 56 等效速度 234.03 m/s HV曲线 m/s 层速度 (m/s) 深度 (m) 厚度 (m) 高程 (m) 序号 地层名称 地层描述 地层图例 600 300 | 3.50 0.50 0.50 0.0 199.1 3 粉质黏土 2 10.50 3.50 3.00 226.3 6 3 粉质黏土 7.50 6.50 3.00 6.0 233.2 7 4 粉质黏土 4.50 9.50 3.00 236.2 8 11.0 5 3.00 粉质黏土 1.50 12.50 245.2 0 粉质黏土 3.00 6 -1.50 15.50 16.0 260.0 6 7 粉质黏土 -4.50 18.50 3.00 288.0 6 8 粉质黏土 -7.50 21.50 3.00 21.0 336.2 4 9 粉质黏土 3.00 -10.50 24.50 26.0 359.8 7 10 粉质黏土 -13.80 27.80 3.30 383.4 0 5.20 11 粉细砂 -19.00 33.00 31.0 440.6 5 12 全风化泥岩 -24.00 38.00 5.00 36.0 468.9 0 13 全风化泥岩 -29.00 43.00 5.00 41.0 500.7 3 14 全风化泥岩 -34.00 48.00 5.00 46.0 518.3 0 15 全风化泥岩 -39.00 53.00 5.00 51.0 521.7 7 全风化泥岩 -42.00 56.00 3.00 16

第四章 目标区地震工程地质条件勘测及断层勘查

图 4.3-4 ZK3 波速测试成果图

工利	星名称		天长化工区区域性地震安全性评价项目						钻孔编号	Z	CK4
钻.	1深度					60			等效速度	20	8.50
序	書 地层名称	高程 (m)	深度 (m)	厚度 (m)	地层描述	地层图例	m (HV曲线 D 300	60	m/s 00	层速度 (m/s)
1	素填土	13.27	1.00	1.00		(X X X X)		{			168.5
2	粉质黏土	10.27	4.00	3.00		1.11					8
3	粉质黏土	7.27	7.00	3.00		1.1.	6.0	\			187.6 9
4	粉质黏土	4.27	10.00	3.00		1/1/					233.1 6
5	粉质黏土	1.27	13.00	3.00		[]]]	11.0	7			196.5 1
6	粉质黏土	-1.73	16.00	3.00		1/1/	16.0	7			236.0 9
7	粉质黏土	-4.73	19.00	3.00		1/1/	1.0.0	2			234.3 8
8	粉质黏土	-7.73	22.00	3.00		1/1/	21.0				246.5 3
9	粉质黏土	-10.73	25.00	3.00		1/1/		1			268.0 4
10	約 影质黏土	-12.93	27.20	2.20		1/1/	26.0				283.9 8
11	粉细砂	-16.93	31.20	4.00			31.0				345.9 5
12	: 粉细砂	-21.93	36.20	5.00			36.0				348.2 7
11	2/40020	-22.53	36.80	0.60					5		275.0
14	全风化泥岩	-27.53	41.80	5.00			41.0		}		382.0 8
15	全风化泥岩	-32.53	46.80	5.00			46.0	<	1		391.5 9
16	全风化泥岩	-37.53	51.80	5.00			51.0 _.				444.2 5
17	全风化泥岩	-42.53	56.80	5.00			56.0 _.				479.0 9
18	全风化泥岩	-45.73	60.00	3.20			60.0		1		511.7 2

图 4.3-5 ZK4 波速测试成果图

工程	名称		天	长化	TZZ	全性评价项目	钻孔编号	ZK	5		
钻孔	深度					50			等效速度	212.	77
序号	地层名称	高程 (m)	深度 (m)	厚度 (m)	地层描述	地层图例	m (HV曲线 0300	60	m/s 层i 10 (m	速度 n/s)
1	素填土	12.50	1.50	1.50		XXXX	-			17	1.7 6
2	粉质黏土	9.50	4.50	3.00		////				18	2.5 6
3	粉质黏土	6.50	7.50	3.00		////	6.0	4		18	:1.0 9
4	粉质黏土	3.50	10.50	3.00						19 1	4.3 8
5	粉质黏土	0.50	13.50	3.00			1 11.0			25	0.0 0
6	粉质黏土	-2.50	16.50	3.00			16.0			26	0.1 2
7	粉质黏土	-5.50	19.50	3.00						26	2.3 9
8	粉质黏土	-8.50	22.50	3.00			21.0	<u>↓</u>		30	2.0 1
9	粉质黏土	-12.50	26.50	4.00			26.0	<u>र</u>		33	9.9 4
10	粉质黏土	-14.60	28.60	2.10		1/1/	1			38	8.2 6
11	粉细砂	-19.60	33.60	5.00		2 2 2	31.0			39	1.4 2
12	粉细砂	-24.00	38.00	4.40		- <i>x</i> - <i>x</i> -	36.0				5.4 6
13	全风化泥岩	-29.00	43.00	5.00			41.0				6.8 4
14	全风化泥岩	-34.00	48.00	5.00			46.0			48	2.2 3
15	全风化泥岩	-36.00	50.00	2.00			50.0		Ϋ́	50	7.8 0

天长市化工集中区区域性地震安全性评价报告

图 4.3-6 ZK5 波速测试成果图

-	L程	名称		天长化工区区域性地震等					全性评价项目	钻孔编号	ZK6
ŧ	沾孔。	深度					80			等效速度	177.22
	序号	地层名称	高程 (m)	深度 (m)	厚度 (m)	地层描述	地层图例	m (HV曲线 300	n 600	n/s 层速度 (m/s)
	1	素填土	11.00	2.00	2.00				Ĺ		140.5
	2	粉质黏土	8.00	5.00	3.00		1/1/.		l l		160.1
	3	粉质黏土	5.00	8.00	3.00		[],[]	6.0			172.8
	4	粉质黏土	2.00	11.00	3.00		[]][11.0			181.1 2
	5	粉质黏土	-1.00	14.00	3.00		[]][185.5 8
	6	粉质黏土	-4.00	17.00	3.00		1/1/	16.0			194.8 5
	7	粉质黏土	-7.00	20.00	3.00		177				208.0 5
	8	粉质黏土	-10.00	23.00	3.00		1/1/	21.0			254.8 0
	9	粉质黏土	-13.40	26.40	3.40		[],[].	26.0			295.4 9
	10	中粗砂	-18.40	31.40	5.00			31.0	7		354.9 4
	11	中粗砂	-22.40	35.40	4.00		,	25.0	1		373.0 8
	12	中粗砂	-24.10	37.10	1.70		, , , , , , , , , , , , , , , , , , ,	30.0		L	388.2
	13	全风化泥岩	-29.10	42.10	5.00			41.0			405.6
	14	全风化泥岩	-34.10	47.10	5.00			46.0			419.6 1
	15	全风化泥岩	-39.10	52.10	5.00			51.0 _.			463.3 1
	16	全风化泥岩	-44.10	57.10	5.00			56.0 _.			481.1 9
	17	全风化泥岩	-49.10	62.10	5.00			61.0 _.			506.7 1
	18	全风化泥岩	-54.10	67.10	5.00			66.0 _.			518.4 7
	19	全风化泥岩	-59.10	72.10	5.00			71.0			522.9 7
	20	全风化泥岩	-64.10	77.10	5.00			76.0			528.2 2
1	21	全风化泥岩	-67.00	80.00	2.90			80.0		<u> </u>	536.8 0

图 4.3-7 ZK6 波速测试成果图

第四章 目标区地震工程地质条件勘测及断层勘查

图 4.3-9 ZK8 波速测试成果图

工程	名称		天长化工区区域性地震安全性评价项目						钆编号	Z	ZK9
钻孔	深度					60		等交	效速度	23	3.97
序号	地层名称	高程 (m)	深度 (m)	厚度 (m)	地层描述	地层图例	m (HV曲线) 300	6	m/s 00	层速度 (m/s)
2	粉质黏土	10.50	3.50	3.00		1/1/1		٦,			178.2
3	粉质黏土	7.50	6.50	3.00		1/1/1	6.0				215.4 2
4	粉质黏土	4.50	9.50	3.00		1/1/1		l			235.4 1
5	粉质黏土	1.50	12.50	3.00		1/1/1	11.0 _.				256.8 0
6	粉质黏土	-1.50	15.50	3.00		i/i/,	16.0				266.1 2
7	粉质黏土	-4.50	18.50	3.00		<u> </u>	10.0				273.4 2
8	粉质黏土	-6.00	20.00	1.50			21.0				285.9
9	中粗砂	-11.00	25.00	5.00				1			305.4 4
10	中粗砂	-16.00	30.00	5.00			26.0 _.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			340.3 1
11	中粗砂	-21.00	35.00	5.00			31.0 _.	·····			368.5 4
12	中粗砂	-26.00	40.00	5.00			36.0				375.2 2
13	中粗砂	-30.50	44.50	4.50			41.0				396.5 2
14	全风化泥岩	-35.50	49.50	5.00			46.0 _.				415.1 3
15	全风化泥岩	-40.50	54.50	5.00			51.0 _.				442.3 0
16	全风化泥岩	-43.50	57.50	3.00			56.0 _.		<u> </u>		482.0 0
17	全风化泥岩	-46.00	60.00	2.50			60.0		7		509.7 8

天长市化工集中区区域性地震安全性评价报告

图 4.3-10 ZK9 波速测试成果图

图 4.3-11 ZK10 波速测试成果图

-	L程	名称		天长化工区区域性地震安全性评价项目						钻孔编号	ZK11
ŧ	沾孔。	深度					55			等效速度	214.35
	序号	地层名称	高程 (m)	深度 (m)	厚度 (m)	地层描述	地层图例	m	HV曲线 D 300	60	m/s 层速度 (m/s)
	2	彩质黏土	13.50	3.50	3.00						167.1 5
	3	粉质黏土	7.50	6.50	3.00			6.0	<u> </u>		199.8 7
	4	粉质黏土	4.50	9.50	3.00		1/1/1		1		201.5 5
	5	粉质黏土	1.50	12.50	3.00			11.0			227.4
	6	粉质黏土	-1.50	15.50	3.00			160	l l		248.1 2
	7	粉质黏土	-4.50	18.50	3.00			16.0	7		258.8 7
	8	粉质黏土	-7.50	21.50	3.00			21.0	<u> </u>		274.4
	9	粉质黏土	-10.50	24.50	3.00						293.9 4
	10	粉质黏土	-13.50	27.50	3.00			26.0	· · · · · · · · · · · · · · · · · · ·		300.3 8
	11	粉质黏土	-16.50	30.50	3.00			21.0			309.4 7
	12	粉质黏土	-18.00	32.00	1.50		i/.//	1 31.0	∇		346.5
	13	粉细砂	-21.00	35.00	3.00					Y	384.0 7
	14	粉细砂	-26.00	40.00	5.00			36.0			385.1 0
	15	粉细砂	-30.00	44.00	4.00			41.0			385.9 9
	16	黏土	-33.00	47.00	3.00			46.0		<u> </u>	428.2 6
	17	黏土	-36.00	50.00	3.00						445.8 9
	18	全风化泥岩	-41.00	55.00	5.00			51.0 55.0			508.8 2

第四章 目标区地震工程地质条件勘测及断层勘查

图 4.3-12 ZK11 波速测试成果图

S 4.3-12 ZK11									1	
工程	名称	-	天长	化工	区区域	性地震多	安全'	生评价项目	钻孔编号	ZK12
钻孔	深度					68			等效速度	219.91
序号	地层名称	高程 (m)	深度 (m)	厚度 (m)	地层描述	地层图例	m	HV曲线) 300	60	m/s 月0 (m/s)
2	粉质黏土	10.50	3.50	3.00		1/1/		5		186.4 5
3	粉质黏土	7.50	6.50	3.00		1/1/	6.0	7		225.1 4
4	粉质黏土	4.50	9.50	3.00		1/1/		}		232.7 1
5	粉质黏土	1.50	12.50	3.00		1/1/	11.0 _.			239.3
6	粉质黏土	-1.50	15.50	3.00		[],[]	16.0	ľ		217.9 2
7	粉质黏土	-3.60	17.60	2.10			16.0	~~~~~ {_~~~~		221.2
8	粉细砂	-8.60	22.60	5.00			21.0			238.3 8
9	粉细砂	-18.60	32.60	10.00			26.0 _. 31.0 _.			280.9 2
10	粉细砂	-23.60	37.60	5.00		<i>x x</i>	36.0 _.			320.6
11	粉细砂	-28.60	42.60	5.00			41.0		1	359.8
12	粉细砂	-29.70	43.70	1.10		· · · · · · · · · · · · · · · · · · ·			7	379.1
13	黏土	-34.70	48.70	5.00			46.0 _.			391.5 2
14	黏土	-39.70	53.70	5.00			51.0 _.			426.7 0
15	黏土	-44.70	58.70	5.00			56.0 _.			443.0 0
16	黏土	-49.00	63.00	4.30			61.0 _.			453.8 3
17	全风化泥岩	-54.00	68.00	5.00			66.0 _. 68.0			522

图 4.3-13 ZK12 波速测试成果图

天长市化工集中区区域性地震安全性评价报告

图 4.3-14 ZK13 波速测试成果图

4.3.2 目标区场地类别划分

根据《建筑抗震设计规范》(GB50011-2010),土层等效剪切波速按下列公式计算:

$$V_{\rm se} = \frac{d_0}{t} \tag{4.3-1}$$

$$t = \sum_{i=1}^{n} \frac{d_i}{V_{si}}$$
(4.3-2)

式中,V_{se}-土层等效剪切波速(m/s);d₀-计算深度(m),取20m 和覆盖层厚度两者之间的小值;t-剪切波在地面至计算深度之间的传 播时间;d_i-计算深度范围内第i土层的厚度(m);V_{si}-计算深度范围 内第i土层的剪切波速(m/s);n-计算深度范围内土层的分层数。

据上述计算公式,得到场地范围内13个实测钻孔的土层等效剪切 波速结果,本次目标区工作范围内各钻孔的土层等效剪切波速值为 177.22~243.46m/s,平均等效剪切波速值为216.20m/s。根据《建筑抗 震设计规范》(GB50011-2010)中场地类别划分标准,建筑物的场地 类别应根据土层等效剪切波速和场地覆盖层厚度按表4.3-1划分。

岩石的剪切波速	场地类别									
或土的等效剪切 波速(m/s)	I ₀	I_1	Π	III	IV					
Vs>800	0									
800≥Vs>500		0								
500≥Vse>250		<5	≥5							
250≥Vse>150		<3	3-50	>50						
Vse≤150		<3	3-15	15-80	>80					

表 4.3-1 场地类别划分依据

本次依据表4.3-1中关于场地类别划分的依据,结合各控制性钻孔 土层等效剪切波速和覆盖层厚度的结果,对各钻孔的场地类别进行了 判定(表4.3-2),本次目标区工作范围内所有钻孔揭示土层均为中软 土,其中ZK2、ZK3、ZK5位置为II类场地,其余钻孔位置为III类场地。

序号	钻孔编号	计算深度(m)	覆盖层厚度(m)	等效波速值(m/s)	场地土类型	场地类别
1	ZK1	20	54	223.15	中软土	III
2	ZK2	20	47	204.66	中软土	II
3	ZK3	20	46	234.03	中软土	II
4	ZK4	20	57	208.50	中软土	III
5	ZK5	20	49	212.77	中软土	II
6	ZK6	20	57	177.22	中软土	III
7	ZK7	20	49	205.52	中软土	II
8	ZK8	20	61	231.97	中软土	III
9	ZK9	20	59	233.97	中软土	III
10	ZK10	20	53	243.46	中软土	III
11	ZK11	20	51	214.35	中软土	III
12	ZK12	20	63	219.42	中软土	III
13	ZK13	20	57	201.57	中软土	III

表 4.3-2 场地剪切波速测试及场地类别划分结果表

4.4 目标区场地土样动力特性参数测试

上样在各级荷载下轴向应力 P 和轴向应变 ε 的时间历程,由应力 应变时程绘出应力应变滞回曲线,由滞回曲线 B 点的应力应变值可求 得试样的轴向模量 E,由 E 可求得土样在该级荷载下模量:

$$G = \frac{E}{2(1+\nu)} \qquad \qquad E = \frac{\sigma_B}{\varepsilon_B}$$

上式中, σ_B、 ε_B分别为滞回线B点所对应的应力应变值, ν为泊 松比,由土类而定。对所求得各级荷载下不同幅值的模量,进行统计 分析时,应力应变关系用双曲线函数表示:

$$\tau = \frac{\gamma}{A + B\gamma}$$

上式中, τ 和 γ 为剪应力和剪应变幅值,A和B为回归常数,若令 $\tau/\gamma = G$,则:

$$\frac{1}{G} = A + B\gamma$$

如果以1/G为纵坐标,γ为横坐标,将实验结果标在该图中,近似 用一条直线来表示它们的关系,显然当γ→0时,可以得到系数A等于 最大剪切模量的倒数,即1/Gmax,因此可得到对应不同应变模量与 最大模量的比值和应变的关系:

$$G/G_{\rm max} = 1/(1+\gamma B/A)$$

继而,求出土样的不同剪应变下的动剪切模量比。土样在荷载下的阻尼比D可用下式求得:

$$D = \frac{1}{4\pi} \cdot \frac{\Delta W}{W}$$

上式中, △W为一个循环消耗的能量, 用应力应变滞回曲线所围的面积表示, W为施加的最大应变能。根据Hardin-Drnevich模型, 阻尼比与剪应变的关系可写为D=Dmax(1-G/Gmax)。依此关系式, 可回归阻尼比与剪应变的关系。

从而,也同样求出土样的不同剪应变下的阻尼比值。

为了获取工程场地各土层的动力学特性,并为土层地震动反应分析提供土层动力学数据,本次委托北京震科经纬防灾技术研究院对本次目标区工作范围场地内的典型土样进行了共振柱测试工作,试验样品为原状土样,试验的成样、试验方法及试验资料整理均按《土工试验规程》SL237-1999中的有关规定进行。本次在目标区工作场地范围内取不同深度不同性质的土样共计23个进行土样动力参数测试,各土样取样参数见表4.4-1,其中粉质粘土18个、粘土4个、细砂1个。实验结果经整理后得到场地钻孔不同土性、不同深度场地土层的动剪切模量比、阻尼比和剪应变的关系。详细测试结果见表4.4-2、图4.4-1至图4.4-23。

序号	钻孔编号	取土深度(m)	岩土名称	密度 (g/cm³)	备注
1	ZK2-2	22.8-23	粉质粘土	2.02	灰蓝、硬塑
2	ZK2-3	36.4-36.6	粉质粘土	2.07	灰白、硬塑
3	ZK3-1	2.0-2.2	粉质粘土	2.07	褐灰、硬塑
4	ZK4-2	11-11.2	粉质粘土	1.99	黄灰、可塑
5	ZK4-3	25-25.2	粉质粘土	1.98	黄灰、硬塑
6	ZK1-1	4.6-4.8	粘土	2.05	蓝灰、硬塑
7	ZK1-2	12.2-12.4	粉质粘土	1.98	黄色、可塑
8	ZK5-2	15.8-16.0	粘土	2.03	灰色、硬塑

表 4.4-1 土样取样参数详情表

9	ZK6-1	4.8-5.0	粉质粘土	1.96	褐色、可塑
10	ZK6-3	23.8-24	粉质粘土	2.05	灰白、可塑
11	ZK7-1	5.8-6.0	粉质粘土	2.04	褐色、可塑
12	ZK7-3	34.1-34.3	粉质粘土	2.01	黄褐、硬塑
13	ZK8-2	17.8-18	粉质粘土	2.05	黄褐、硬塑
14	ZK9-1	5.8-6.0	粘土	1.98	灰色、可塑
15	ZK9-2	12.8-13.0	粘土	1.99	黄褐、硬塑
16	ZK10-1	19.6-19.8	粉质粘土	2.06	黄色、硬塑
17	ZK10-3	42-42.2	粉质粘土	2.01	褐红、硬塑
18	ZK11-2	26.6-26.8	粉质粘土	1.84	黄绿、硬塑
19	ZK12-1	2.8-3	粉质粘土	2.02	褐灰、硬塑
20	ZK12-2	11-11.2	粉质粘土	2.07	褐灰、硬塑
21	ZK12-4	40.4-40.6	细沙	2.05	黄色、中密
22	ZK13-1	6.8-7	粉质粘土	1.99	灰褐、硬塑
23	ZK13-2	27-27.2	粉质粘土	1.89	褐红、硬塑

第四章 目标区地震工程地质条件勘测及断层勘查

表 4.4-2 土样动力参数测试结果

十样	固结压	剪切模量				剪应变	γd(10 ⁻⁴)			
编号	力 kPa	比 阻尼比	0.05	0.1	0.5	1	5	10	50	100
7822	155	$G_{\rm d}/G_{ m dmax}$	0.9949	0.9901	0.9543	0.9141	0.6869	0.5248	0.1814	0.0996
ZK2-2	155	λ	0.0136	0.0165	0.0303	0.0411	0.0819	0.1037	0.1420	0.1502
7823	245	$G_{\rm d}/G_{ m dmax}$	0.9962	0.9923	0.9603	0.9221	0.6989	0.5386	0.1956	0.1108
ZK2-3	243	λ	0.0121	0.0144	0.0264	0.0363	0.0761	0.0979	0.1370	0.1457
7K2 1	50	$G_{\rm d}/G_{\rm dmax}$	0.9938	0.9879	0.9441	0.8958	0.6425	0.4786	0.1623	0.0903
ZK3-1	50	λ	0.0148	0.0182	0.0342	0.0465	0.0901	0.1116	0.1467	0.1539
784 2	75	$G_{\rm d}/G_{ m dmax}$	0.9938	0.9874	0.9386	0.8844	0.6146	0.4527	0.1567	0.0896
ZK4-2	15	λ	0.0148	0.0185	0.0358	0.0491	0.0942	0.1149	0.1474	0.1541
71/4 2	170	$G_{\rm d}/G_{ m dmax}$	0.9952	0.9906	0.9574	0.9199	0.7027	0.5416	0.1869	0.1013
ZK4-3	170	λ	0.0133	0.0155	0.0268	0.0362	0.0752	0.0978	0.1402	0.1494
7 <i>V</i> 1 1	50	$G_{\rm d}/G_{ m dmax}$	0.9941	0.9885	0.9474	0.9018	0.6567	0.4929	0.1676	0.0926
ZK1-1	30	λ	0.0144	0.0175	0.0321	0.0436	0.0862	0.1082	0.1452	0.1529
711.2	05	$G_{\rm d}/G_{\rm dmax}$	0.9939	0.9877	0.9409	0.8888	0.6248	0.4625	0.1600	0.0910
ZK1-2	05	λ	0.0147	0.0182	0.0347	0.0474	0.0919	0.1130	0.1466	0.1536
71/5 2	105	$G_{\rm d}/G_{\rm dmax}$	0.9943	0.9887	0.9459	0.8979	0.6453	0.4824	0.1671	0.0942
ZK3-2	105	λ	0.0142	0.0168	0.0301	0.0412	0.0842	0.1064	0.1442	0.1523
7 <i>V</i> 6 1	50	$G_{\rm d}/G_{ m dmax}$	0.9931	0.9869	0.9431	0.8957	0.6458	0.4800	0.1564	0.0845
ZK0-1	50	λ	0.0155	0.0188	0.0341	0.0459	0.0895	0.1117	0.1488	0.1562
746 2	160	$G_{\rm d}/G_{ m dmax}$	0.9950	0.9900	0.9509	0.9062	0.6629	0.5008	0.1769	0.1002
2K0-3	100	λ	0.0134	0.0158	0.0281	0.0387	0.0804	0.1026	0.1414	0.1499
717 1	50	$G_{\rm d}/G_{ m dmax}$	0.9942	0.9890	0.9527	0.9129	0.6890	0.5262	0.1758	0.0938
ZK/-1	50	λ	0.0143	0.0167	0.0285	0.0383	0.0781	0.1011	0.1434	0.1525
717 2	220	$G_{\rm d}/G_{ m dmax}$	0.9960	0.9919	0.9591	0.9205	0.6961	0.5355	0.1930	0.1089
ZK7-3	230	λ	0.0123	0.0147	0.0266	0.0365	0.0764	0.0983	0.1377	0.1465
749 2	120	$G_{\rm d}/G_{ m dmax}$	0.9944	0.9891	0.9495	0.9051	0.6641	0.5010	0.1726	0.0959
ZK0-2	120	λ	0.0140	0.0168	0.0303	0.0412	0.0832	0.1053	0.1435	0.1517
7V 0 1	50	$G_{\rm d}/G_{ m dmax}$	0.9932	0.9867	0.9389	0.8866	0.6216	0.4575	0.1531	0.0854
289-1	50	λ	0.0154	0.0186	0.0341	0.0464	0.0912	0.1132	0.1486	0.1559
780.2	85	$G_{\rm d}/G_{ m dmax}$	0.9941	0.9884	0.9455	0.8976	0.6452	0.4815	0.1645	0.0919
2173-2	05	λ	0.0145	0.0176	0.0324	0.0442	0.0876	0.1094	0.1457	0.1533
ZK10-1	135	$G_{\rm d}/G_{\rm dmax}$	0.9946	0.9896	0.9518	0.9094	0.6748	0.5120	0.1762	0.0972

		λ	0.0138	0.0163	0.0288	0.0391	0.0801	0.1026	0.1425	0.1511
ZK10-3	280	$G_{\rm d}/G_{ m dmax}$	0.9965	0.9926	0.9597	0.9198	0.6899	0.5304	0.1978	0.1149
		λ	0.0115	0.0139	0.0260	0.0364	0.0766	0.0980	0.1356	0.1440
ZK11-2	180	$G_{\rm d}/G_{\rm dmax}$	0.9953	0.9907	0.9561	0.9165	0.6904	0.5288	0.1854	0.1027
		λ	0.0131	0.0158	0.0287	0.0391	0.0796	0.1015	0.1405	0.1489
ZK12-1	50	$G_{\rm d}/G_{\rm dmax}$	0.9939	0.9880	0.9440	0.8951	0.6400	0.4766	0.1630	0.0913
		λ	0.0146	0.0177	0.0327	0.0447	0.0883	0.1101	0.1460	0.1535
ZK12-2	75	$G_{\rm d}/G_{\rm dmax}$	0.9938	0.9874	0.9370	0.8808	0.6062	0.4453	0.1556	0.0898
		λ	0.0148	0.0179	0.0337	0.0464	0.0918	0.1131	0.1469	0.1541
ZK12-4	270	$G_{\rm d}/G_{\rm dmax}$	0.9966	0.9928	0.9618	0.9242	0.7018	0.5418	0.1990	0.1136
		λ	0.0117	0.0140	0.0257	0.0357	0.0753	0.0970	0.1359	0.1446
ZK13-1	50	$G_{\rm d}/G_{ m dmax}$	0.9934	0.9866	0.9341	0.8759	0.5962	0.4351	0.1498	0.0860
		λ	0.0153	0.0186	0.0354	0.0487	0.0947	0.1158	0.1487	0.1555
ZK13-2	180	$G_{\rm d}/G_{\rm dmax}$	0.9953	0.9910	0.9589	0.9225	0.7098	0.5497	0.1912	0.1037
		λ	0.0131	0.0155	0.0272	0.0367	0.0754	0.0977	0.1395	0.1486

天长市化工集中区区域性地震安全性评价报告

图4.4-2 样品ZK2-3剪切模量比 G/Gmax和阻尼比λ 与剪应变幅值 γ 关系曲线

图 4.4-4 样品 ZK4-2 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

第四章 目标区地震工程地质条件勘测及断层勘查

图4.4-6 样品ZK1-1剪切模量比 G/Gmax和阻尼比 λ 与剪应变幅值 γ 关系曲线

图4.4-8 样品ZK5-2剪切模量比 G/Gmax和阻尼比λ 与剪应变幅值 γ 关系曲线

122

图4.4-10 样品ZK6-3剪切模量比 G/Gmax和阻尼比λ 与剪应变幅值 γ 关系曲线

图4.4-12 样品ZK7-3剪切模量比 G/Gmax和阻尼比λ 与剪应变幅值 γ 关系曲线

图 4.4-14 样品 ZK9-1 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

图 4.4-15 样品 ZK9-2 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

图 4.4-16 样品 ZK10-1 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

图 4.4-18 样品 ZK11-2 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

图 4.4-20 样品 ZK12-2 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

图 4.4-21 样品 ZK12-4 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

图 4.4-22 样品 ZK13-1 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

第四章 目标区地震工程地质条件勘测及断层勘查

4.5 目标区场地工程地质分区

依据场地类别划分结果、钻孔揭示的土层分布特征,并结合野外 考察资料、地形资料、地貌资料及水文地质资料对目标区工作范围的 场地进行了工程地质分区。本次工作将目标区分为1个工程地质分区, 即河谷平原工程地质区。本区地貌属江北丘陵和波状平原地貌亚区, 微地貌为河谷平原,地形平坦,地面标高5~20m,相对高差小于10m。 揭露地层主要由粘土、粉质粘土、粉细砂、粗砂及全风化泥岩等地层 组成。地下水以松散岩类孔隙水为主,含水层透水性较好,容易接受 大气降水的补给。具体分区情况见图4.5-1。

图 4.4-23 样品 ZK13-2 剪切模量比 G/Gmax 和阻尼比 λ 与剪应变幅值 γ 关系曲线

天长市化工集中区区域性地震安全性评价报告

4.6 目标区主要断层勘查和活动性鉴定

结合近场地震构造图可知,本次主要针对目标区工作范围内开展 浅层人工地震反射探测,在目标区范围内布设2条测线,长度3.50km, 测线布置平面图见图4.6-1。本次浅层地震工作委托安徽省煤田地质局物 探测量队开展。

图 4.6-1 浅层地震测线位置图

4.6.1 地震地质条件

测区地表相较平坦,QZ2测线位于工业大道,通过车辆较多,两测线路面基本为水泥路面,部分地段给检波器埋置带来困难,本区地表地震地质条件一般(图 4.6-2)。

本区地面标高 20~50m,相对高差 10~20m,由第四系中上更新 统坡积、冲洪积物组成,主要微地貌类型为岗坡地和坡岗地,局部丘 陵外围为岗丘地。潜水面 5~15m,以粉细砂为主。本区浅层地震地 质条件一般。

通过现场干扰波调查,在该工作区主要存在以下几种干扰波(图 4.6-3):

随机干扰波:由汽车、机械振动和其他人为干扰造成,主要以随 机干扰的形式存在于记录上。

初至波:它是指最早到达检波器的波,有时是直达波,也可能是 折射波。折射波属于规则干扰波。它具有能量较强、频率较高、速度 高等特点,而且与反射波频带比较接近,以初至波的形式存在于记录 上。

面波:面波是一种沿地表传播的地震波,其速度和频率较低,但 能量较强,是地震勘探的主要干扰波。

QZ1 线

QZ2 线

图 4.6-2 测线地表施工环境

图 4.6-3 测区原始记录

从原始记录上可以看出,本区干扰波主要为面波和声波,能量较强,但是由于该测线地震地质条件较好,震源激发能量较强,有效反射波能量较强,因此在130ms、310ms左右获得了多组连续性较好反射波。

4.6.2 采集参数

本次浅层地震勘探基岩面埋深约为 300m,为保证深部采集资料的信噪比、分辨率和浅部的叠加次数,选择道距 2m,180 道单边接收,22 次叠加的试验采 集参数。采集参数如下:

仪器型号:法国产 428XL 数字地震成像系统,多道接收,遥控激发。

- 接收道数: 180 单边激发接收
- 接收道距:2m
- 激发点距:8m
- 采样间隔: 0.25ms
- 记录长度: 1.5s
- 记录格式: SEG-D

133

检 波 器: 单个 60Hz 震动次数: 4 次 驱动电平: 60% 扫描长度: 10s 扫描频率: 10-120Hz

激 发: 5tWTC5111TZY 可控震源

图 4.6-4 180 道单边激发接收观测系统示意图

表 1 为本次浅层地震反射探测测线情况明细表,测线长度共计 3.5km, 生产物理点 451 个,点试验 16 个。

应 旦	洞护吕	测线起	止坐标	测化拉早	炮化拉早	测线长度
厅写	测线亏	Х	Y	侧线性与	炮线性亏	(km)
1	071	3640130.892	679146.478	1000 1750	1000-1738	15
1	QZI	3640063.003	680642.542	1000-1730		1.5
2	QZ2	3638907.542	680652.847	1000 2000	1000-2000	2.0
		3640849.770	680166.979	1000-2000		

表 4.6-1 测线情况明细表

图 4.6-5 到图 4.6-6 为各测线的典型原始单炮记录。为了便于说明记录质量,减少主观因素,每条测线选取 2 炮地震记录进行质量分析。由图可见,各测线各波组发育良好,目的层反射波组能量强且同相轴连续,波组分辨率良好,表征基岩面的反射波组波场特征明显。 原始资料记录质量依照《浅层地震勘查技术规范》DZ/T0170-1997 进行评定验收。其中优良 305 个,占 67.63%,生产物理点全部合格;试验物理点 16 个,全部合格。

天长市化工集中区区域性地震安全性评价报告

图 4.6-5 QZ1 线典型原始单炮记录

图 4.6-6 QZ2 线典型原始单炮记录

4.6.3 浅层地震勘探成果分析

(1) QZ1 测线

QZ1 测线沿乡道东西布设,其西端起于四里村村西,近东西向穿 过四里村、花园庄,东端止于花园西路,测线长度为 1.5km。 时深转换结果显示, T_{Q+N}底界面埋深为 120m 左右, 整体厚度变 化不大; 第三系底界埋深 350m 左右。

从时间剖面(图 4.6-7)上可以识别出 2 组强反射波。第四系底 界面反射波组清晰,呈近水平形态展布,其反射能量较强,且在整条 剖面都表现的比较均衡,能够连续、可靠追踪;新近系地层与下伏古 近系地层呈不整合接触,界面起伏变化较小,不整合面及上部覆盖第 三系地层反射波整体连续性较好,能够连续、可靠追踪且具有很好的 横向连续性。综上,推断在该测线控制范围内不存在第四纪断裂。

图 4.6-7 天长化工集中区浅层地震 QZ1 线时间剖面及地质剖面图

(2) QZ2 测线

QZ2 测线沿工业大道近南北布设,其南端起于兴民西路,北端止于光明西路,测线长度 2.0km。

时深转换结果显示, T_{Q+N}底界面埋深为 120m 左右, 整体厚度变 化不大; 第三系底界埋深 350m 左右。

从时间剖面(图 4.6-8)上可以识别出 2 组强反射波。第四系底 界面反射震相清晰,呈近水平形态展布,其反射能量较强,且在整条 剖面都表现的比较均衡,能够连续、可靠追踪;新近系地层与下伏古 近系地层呈不整合接触,界面起伏变化较小,不整合面及上部覆盖第 三系地层反射波整体连续性较好,能够连续、可靠追踪且具有很好的 横向连续性。综上,推断在该测线控制范围内不存在第四纪断裂。

图 4.6-8 天长化工集中区浅层地震 QZ2 线时间剖面及地质剖面图综合目标区的2条浅层地震勘探测线的探测结果可知,目标区在浅震探测深度范围内未发现第四纪断裂通过的明显迹象。

第五章 地震危险性分析

根据《工程场地地震安全性评价》(GB17741-2005)和《区域性地震 安全性评价工作大纲(试行)》(中震防函(2019)21号)的相关规定和 要求,本章依据前述章节关于区域及近场区地震活动性、区域及近场地质 构造背景的研究,确定对工程场地地震安全性评价有影响的地震带及潜在 震源区,确定地震带及潜在震源区地震活动性参数,并利用适当的地震动 衰减关系,用地震危险性概率分析方法,进行场地的地震危险性分析计算, 得到未来50年期限内场地遭遇超越概率为63%、10%、2%条件下的场地基 岩地震动峰值加速度及反应谱。

5.1 方法概述

本项目采用概率地震危险性分析方法,其主要特点在于考虑了地震活动的时空不均匀性,基本思路和计算方法概述如下:

①首先确定地震统计单元(地震带),以此作为考虑地震活动时间非均匀性、确定未来百年地震发生的概率模型和地震空间分布模型的基本单元。

地震统计区内地震时间过程符合分段的泊松过程。令地震带的震级上限为*m_{uz}*,震级下限为*m₀*,t年内*m₀~<i>m_{uz}*之间地震年平均发生率*V₀*,*V₀*由未来的地震活动趋势来确定,则统计区内t年内发生n次地震的概率:

$$P(n) = \frac{(v_0 t)^n}{n!} e^{-v_0 t}$$
(5.1-1)

同时地震统计区内地震活动性遵从修正的震级频度关系,相应的震级 概率密度函数为:

$$f(m) = \frac{\beta \exp[-\beta(m - m_0)]}{1 - \exp[-\beta(m_{uz} - m_0)]}$$
(5.1-2)

其中, $\beta = b \ln 10$, b为震级频度关系的斜率。实际工作中, 震级*m*分成 N_m 档, m_j 表示震级范围为 ($m_j \pm \frac{1}{2}\Delta m$)的震级档。则地震统计区内发生 m_j 档地震的概率:

$$P(m_j) = \frac{2}{\beta} \cdot f(m_j) \cdot Sh(\frac{1}{2}\beta\Delta m)$$
(5.1-3)

②在地震统计区内部划分潜在震源区,并以潜在震源区的空间分布函数fi,mj来反映各震级档地震在各潜在震源区上分布的空间不均匀性,而潜
在震源区内部地震活动性是一致的。

③根据分段泊松分布模型和全概率公式,地震统计区内部发生的地震, 影响到场点地震动参数值A超越给定值a的年超越概率为:

$$P_k(A \ge a) = 1 - \exp\{-\frac{2\nu_0}{\beta} \cdot \sum_{j=1}^{N_m} \sum_{i=1}^{N_i} \iiint P(A \ge a \mid E) \cdot f(\theta) \cdot \frac{f_{i,m_j}}{A(S_i)} \cdot f(m_j) \cdot Sh(\frac{1}{2}\beta\Delta m) dx dy d\theta\} \quad (5.1-4)$$

 $A(S_i)$ 为地震统计区内第*i*个潜在震源区的面积, $P(A \ge a|E)$ 为地震统计区内第*i*个潜在震源区内发生某一特定地震事件(震中(x,y),震级 $m_j \pm \frac{1}{2}\Delta m$,破裂方向确定)时场点地震动超越a的概率, $f(\theta)$ 为破裂方向的概率密度函数。

④假定共有N_z个地震统计区对场点有影响,则综合所有地震统计区的 影响得:

$$P(A \ge a) = 1 - \prod_{k=1}^{N_z} (1 - P_k(A \ge a))$$
(5.1-5)

5.2 潜在震源区的划分

潜在震源区的划分是工程地震危险性分析的重要步骤,它是在研究区 域内确定未来潜在发生破坏性地震的区域。本项工作的潜在震源区划分是 在区域、近场地震活动性、地震构造研究成果的基础上,按一定的原则和 方法,划分出可能发生强震的分布区域、潜在地震的最大强度及有关参数。 本次工作潜在震源区划分,采用了新一代全国地震区划图所使用的潜在震 源区划分原则和方案,在经本地区调查资料复核的基础上确定的。

5.2.1 潜在震源区划分原则

本次潜在震源区划分工作仍采用历史地震重复与构造类比两个原则 进行潜在震源区划分。在具体应用上述两条原则时,注意把握了以下三点:

①采用历史地震重复原则为主进行判划时,辅以地震构造类比原则进行不确定性和充分性论证。

②采用地震构造类比原则为主进行判划时,辅以地震活动强度(包括 古地震)及潜在地震能力方面的论证。

③不同地震构造区内判划的潜在震源区在整个地震带内进行协调(包括最大潜在地震、不同震级档潜源个数等)。

本次潜在震源区划分中,采用了三级划分的潜在震源区模型,由地震带(地震带)、背景地震活动潜在震源区(简称背景源)和构造潜在震源区(简称构造源)构成。地震带是根据地震分区分带的地震活动特征确定的,它用以反映地震活动的总体统计特征;背景源的划分,重点依据了地

震区带中的不同部分和段落在地震构造背景上的差异,及其对地震活动性 的影响,用以反映不同地震构造环境中中小震级地震活动特征的差异;构 造源是依据局部构造条件及其地震活动特征划分,重点考虑了构造条件对 中强地震的控制作用,用以反映局部构造相关的中强震级地震活动特征。 地震带内地震活动性的不均匀性,由构造源上的中强地震活动性和背景源 上中小地震活动性共同表现出来。

5.2.2 潜在震源区震级上限确定的依据

本报告潜在震源区划分中,潜在震源区震级上限的确定将综合考虑下 列两项依据。

(1)地震活动性依据。历史地震资料给出了各地区曾发生过的地震记载 情况,由于有地震记载的历史年代不够长,缺失和遗漏都在所难免,因此, 历史上记载到的最大震级可能并不足以表示未来可能发生的最大地震的 震级。一般情况下,各潜在震源区的震级上限不应低于区内最大历史地震 的震级。对于已有历史地震记载的潜在震源区,若历史地震记载时间悠久 并资料比较充分,可以将历史上发生的最大地震的震级作为震级上限。在 资料不完整的地区,则根据历史地震记载及该区地震构造分析的结果,将 历史地震的最大震级加半级作为震级上限。在有可靠古地震资料的地方, 古地震的强度也应是确定潜在震源区震级上限的依据之一。

(2)地质构造依据。根据目前我国地震构造研究的状况,在确定发震构造所能产生的最大地震时,重点考虑活动断层的方向、性质以及构造规模与断层上发生地震最大震级的控制作用。

本报告在确定潜在震源区震级上限时,不是以某一个条件作为依据, 也不是采用个别震例简单的构造对比,而是综合考虑潜在震源区内地震活动的状况、地震发生的构造环境、现代构造应力场作用下的发震断层的活动性质和活动性,以及发震构造的规模等因素。且对于每一方面的依据, 都是采用大量数据的统计结果作为构造对比的根据。

5.2.3 潜在震源区边界的确定

在确定潜在震源区范围时,考虑到高震级档的潜在震源区内发震构造 条件相对较为明确,地震多发生在一些特殊构造部位,因此对于构造条件 较为明确、发震构造较清楚的高震级档潜在震源区应尽可能划小,勾划出 震中可能的分布范围,以突出大地震活动空间不均匀性的特点。对于发震 构造条件不十分清楚、空间分布不确定性因素较大的潜在震源区,适当划 大或划多一些,以适应当前对这类地震的认识水平和进行不确定性分析。

5.2.4 潜在震源区划分结果

根据上述潜在震源区划分原则和标志,在"新编中国地震动参数区划 图"编委会的地震区带划分方案(2011.6)的基础上,结合区域及近场区的地 震构造、地震活动和地球物理场的研究成果,在区域范围内共划分出 38 个潜在震源区(图 5.2-1),其中 8.5级潜在震源区 1 个,7.5级潜在震源 区 3 个,7.0级潜在震源区 3 个,6.5级潜在震源区 12 个,6.0级潜在震源 区 19 个。本次工作区域范围内,长江下游——南黄海地震带在区域范围内的 背景性潜在震源区震级上限全部为 5.5级,郑庐地震带在区域范围内的背 景性潜在震源区震级上限为 5.0级及 5.5级。目标区位于天长潜在震源区 (72 号,震级上限 6.0级)内。

图 5.2-1 潜在震源区划分图

本文中仅对场地周边地区并且对场址地震动参数有重要影响的潜在 震源区划分依据进行简单论述,如下。

表 5.2-1 区域主要潜在震源区划分表

地震带	编号	名称	震级上限
	43	莒县潜在震源区	8.5
	44	苍山潜在震源区	7.0
	45	滕州潜在震源区	6.5
	46	萧县潜在震源区	6.0
	47	邳县潜在震源区	6.5
	48	徐州潜在震源区	6.0
	49	泗县潜在震源区	6.5
	50	宿迁潜在震源区	7.5
郯庐地震带	51	泗洪潜在震源区	7.5
	53	固镇潜在震源区	6.0
	54	蚌埠潜在震源区	6.5
	55	凤台潜在震源区	6.5
	58	合肥西潜在震源区	6.0
	59	明光潜在震源区	6.5
	60	合肥潜在震源区	6.5
	63	霍山潜在震源区	7.0
	65	潜山潜在震源区	6.0
	70	连云港东潜在震源区	6.5
	71	淮阴潜在震源区	6.0
	72	天长潜在震源区	6.0
	73	盐城潜在震源区	6.0
	74	泰州潜在震源区	6.0
	75	海安潜在震源区	6.0
	76	南坳陷北潜在震源区	7.0
	77	瑶沙潜在震源区	7.5
	78	南坳陷南潜在震源区	6.5
长江下游-南黄海地震带	80	扬州潜在震源区	6.5
	81	南京潜在震源区	6.0
	82	马鞍山潜在震源区	6.0
	83	贵池潜在震源区	6.0
	85	芜湖潜在震源区	6.0
	86	常州潜在震源区	6.0
	87	溧阳潜在震源区	6.5
	88	宣城潜在震源区	6.0
	89	南通潜在震源区	6.0
	90	昆山潜在震源区	6.5

91	无锡潜在震源区	6.0
92	宜兴潜在震源区	6.0

(1) 郯庐断裂相关潜在震源区

该组潜在震源区包括泗县潜在震源区(49号源)、泗洪潜在震源区(51 号源)、明光潜在震源区(59号源)、合肥潜在震源区(60号源)和潜 山潜在震源区(65号源),其发震构造为郯庐断裂带中南段。郯庐断裂带 区域范围内的部分又可细分为五河-明光段和明光-潜山段。明光-潜山段为 早、中更新世活动断层,划震级上限 6.5级潜在震源区(59号源、60号源) 和震级上限 6.0级潜在震源区(65号源),近期小震活动频繁,密集成带。

(2)蚌埠潜在震源区

蚌埠潜在震源区内有活动性较强的北西向涡河断裂、北北东向固镇~ 怀远断裂、北西西向颍上~定远断裂通过,其中涡河断裂为晚第四纪活动 断裂。在构造地貌上位于江淮丘陵与淮北平原区交接地带,曾发生 1537 年灵璧 M5¹/2级地震、1644 年凤阳 M5¹/2级地震及 1979 年固镇 M5 级地震。 综合分析,将蚌埠潜在震源区震级上限定为 6.5 级(54 号源)。

(3)凤台潜在震源区

区内有活动性较强的北西向涡河断裂、近东西向阜阳~凤台断裂、北 西西向颍上~定远断裂通过,其中涡河断裂为晚第四纪活动断裂。在构造 地貌上位于江淮丘陵与淮北平原区交接地带,曾发生 294 年寿县 M5¹/2级 地震和 1831 年凤台 M6¹/4级地震。综合分析,将蚌埠潜在震源区震级上限 定为 6.5 级(55 号源)。

(4)霍山潜在震源区

该潜在震源区所依据的发震构造为落儿岭~土地岭断裂。落儿岭~土 地岭断裂在区域范围内由六安段、霍山段、霍山南段构成,各段长度一般 40~50km,这三段均为晚更新世以来活动断裂。此断裂与北西向断裂交汇 部位历史上发生过多次中强地震,震级在 5~6¹/4 级之间,其中包括发生在 霍山段的 1652 年 6 级和发生在霍山南段的 1917 年 6¹/4 级地震,近期微震 活动频繁,形成一条明显的北北东~南南西向的地震密集带。综合以上特 征,将断裂活动性和地震活动较强这三段划分为震级上限为 7.0 级的潜在 震源区 (63 号源)。

(5)芜湖潜在震源区

芜湖潜在震源区位于苏北地震构造区内,沿南陵-小丹阳断裂划分,该断裂控制了芜湖盆地的西界,盆地第四系厚 60~80m。在凤凰山采矿场, 三叠系灰白色砂岩的断裂面上发育厚 2~5cm 的断泥层带,取 ESR 样品测 年结果为(884±90)ka。在南陵戴家汇北的水库坝区,志留纪砂岩中发育断裂,断层泥 ESR 测年结果是(877±90)ka(中国地震局地质研究所等,2007)。源区内南陵-小丹阳断裂为早第四纪断裂。综合分析,判定该潜在震源区震级上限定为 6.0级(85 号源)。

(6)马鞍山潜在震源区

该潜在震源区所依据的构造背景为乌江~罗昌河断裂。乌江~罗昌河 断裂是老山凸起与东部的宁芜断陷盆地的分界断裂,明显控制新生代地层 的分布及沉积厚度。在重力异常图上表现为重力异常梯级带,地形地貌反 应明显。浅层地震勘探结果显示,断裂明显断错了基岩面,视断距约 1m, 第四系下部地层也有扰动迹象。上述迹象表明该断裂第四纪有所活动,应 为第四纪早中更新世断裂。因此,沿乌江~罗昌河断裂连同滁河断裂展布 区域共同划分为震级上限为 6.0 级的潜在震源区(82 号源)。

(7)贵池潜在震源区

巢湖以南至贵池之间,展布着严家桥~枫沙湖断裂,断续延伸,长度 超过 100km。断裂的地貌表现清楚,对第四纪沉积具有明显的控制作用, 最新活动时代为早、中更新世。沿断裂发生 1585 年巢县南 5³/4 级地震、1654 年庐江东南 5¹/4 级地震、1535 年贵池和 1561 年贵池西南两次 4³/4 级地震, 近期小震活动较为频繁。在以往本地区有关核工程厂址地震安全性评价工 作中,该断裂被鉴定为最大潜在地震为 6 级的发震构造。基于以上地质和 地震活动背景,沿断裂划分为震级上限为 6.0 级的潜在震源区(83 号源)。

(8)宣城潜在震源区

该潜在震源区位于宣城~泾县一带,宣城~泾县断裂贯穿整个潜源区, 同时茅东断裂带最南段也通过该潜源区,与其相接的茅东断裂带北段活动 性较强,是该潜在震源区主要发震断裂。1743年安徽泾县5级地震发生该 潜在震源区内,将宣城潜在震源区震级上限定为6.0级(88号源)。

(9)扬州潜在震源区

扬州潜在震源区位于苏北地震构造区内,北东向、北西向和近东西向 三组断裂相交于区内,它们对上新世—第四纪沉积、玄武岩的分布及现代 地形地貌发育都有一定控制作用。北西和北东东方向展布的重力异常在区 内相交。历史上区内多次发生过破坏性地震,如 1624 年扬州 6 级地震和 1913 年镇江 5½级地震。近代小震活动频度较高。潜源区边界主要根据北 东向和北西向两组第四纪断裂及重力异常梯度带划定的。根据地震构造条 件、地球物理场特征及地震活动性等分析,将扬州潜源区震级上限定为 6.5 级(80 号源)。

5.3 地震活动性参数的确定

为反映地震活动的空间不均匀性,地震活动性参数按两级确定。第一 级为地震带活动性参数,它反映不同地区孕震条件和地震时、空活动特征 的差异;第二级是地震带内各个潜在震源区的参数,反映地震带内地震活 动的空间非均匀性。

5.3.1 地震带活动性参数的确定

1. 震级上限 Muz 和起算震级 Mo 的确定

震级上限 Muz 的含义是指震级—频度关系式中,累积频度趋于零的震级极限值。确定 Muz 有两条主要依据:一是历史地震资料足够长的地区,地震带中地震活动已经历几个地震活动期,可按该区内发生过的最大地震强度确定 Muz;二是在同一个大地震活动区内,用构造类比外推,认为具有相似构造条件的地震带,可发生相似强度的最大地震。在实际工作中,综合考虑以上两条原则,且遵从地震带的震级上限 Muz 应等于区内各潜在震源区震级上限(Mu)的最大值这一原则,即 Muz=(Mu)max。因此有:

郯庐地震带 Muz=8.5;长江下游—黄海地震带 Muz=7.5。

起算震级 M₀ 系指对工程场地有影响的最小震级,它与震源深度、震源类型、震源应力环境等有关。由于区域范围内地震属浅源地震,一些 4级地震也会产生一定程度的破坏,故在本研究中 M₀取 4 级。

2. 各地震带 b 值和 v_4 的确定

b 值依据古登堡—里克特所定义的震级频度关系式 lg^N=a-bM,由实际地震数据统计确定。式中 a,b 为常系数,N 为震级大于等于 M 的地震个数。由于 b 值是在实际地震资料统计的基础上获得,它与资料的可靠性、完整性、取样时空范围、样本起始震级、震级间隔等因素有关。

v₄是地震带(地震带)4.0级以上地震的年发生次数,即4.0级以上地震的年平均发生率。从概率角度来说,v₄代表地震带(地震带)年4.0级以上地震次数随机变量的泊松期望值。

本次工作中采用了新一代全国地震动参数区划图编制中确定 b 值和 v₄ 的方法,在不同方案进行统计分析后确定的 b 值和 v₄作为初值的基础上,根 据地震带(地震带)内实际地震的发生率、地震带(地震带)未来地震活 动趋势分析结果、1970年以来近 40 年的仪器记录地震资料所反映的中强 地震发生次数的分布特点等因素,并基于对未来地震危险性给予合理保守 考虑的原则,进行必要的调整,最终确定地震带 v₄与b 值的结果。本次工作 最终使用的 b 和 v₄数值,直接采用了新一代全国地震动参数区划图编制中确 定 b 值 和 v_4 的结果。

(1) 郑庐地震带发生过著名的 1668 年郑城—莒县 8¹/2 级特大地震。 该区地震记载最早始于公元前 70 年,但公元 1500 年之前,地震缺失较多, 1500 年后 M5 级以上地震记录才基本完整,M≥5.0 级地震发生较为平稳, 1970 年以来 4 级以上地震记录较全。公元 1477 和公元 1829 年是两个地震 活动相对密集期的开始,未来地震活动水平不应低估活跃期水平。

对v₄与b值进行调整,重点考虑以下控制:

①M4级以上地震年发生率应大致相当1970年以来地震活动水平;

②M5级以上地震年发生率应不低于 1477 年、1892 年以来地震活动水平;

③较大震级发生率应重点考虑 1500 年以来地震活动情况;

经调整,确定郯庐地震带地震活动性参数为 b=0.85, v₄=4.0。图 5.3-2 给 出了理论计算值与实际统计数据点的比较,结果可以看出,所得 b、v₄参数计 算得到的理论发生率在小震级段,与 1970 年以来的水平大致相当;在中 强震级段与活跃期地震活动水平相当;而在高震级段,基本与 1500 年以 来活动水平相当,考虑到这一时期发生过多次 7 级以上地震,因此,发生 率应该具有一定的保守性。

图 5.3-1 郯庐地震带各时段实际统计与理论结果对比

(2) 长江下游—黄海地震带是地震活动较强地区,以中强地震活动为 主要特征,大地震较少,且主要发生在南黄海海域,最大地震震级为7级。 该区最早的地震记载始于公元 499 年,1485 年之前地震缺失较多,1485 年后 M5 级以上地震记录基本完整,1970 年以来4级以上地震记录较全。 1491 年和 1839 年为两个地震活动相对密集期的开始,未来地震活动水平 不应低估活跃期水平。 对v₄与 b 值进行调整, 重点考虑以下控制:

①M4级以上地震年发生率应大致相当 1970 年以来地震活动水平;

②M5级以上地震年发生率应大致相当 1491、1839 年以来地震活动水平;

③较大震级发生率应重点考虑 1485 年以来地震活动情况;

经调整,确定长江下游—南黄海地震带地震活动性参数为 b=0.85, v₄ =3.0。图 5.3-3 给出了理论计算值与实际统计数据点的比较,结果可以看出, 所得 b、v₄参数计算得到的理论发生率与各个时段的实际地震发生率符合 较好,在 6.0-6.5 档略低,主要是该档地震在这一时期较为集中所致,理论 发生率取多个时段的中间值。由于在高震级段样本较少,因此,理论发生 率略保守。

图 5.3-2 长江下游—黄海地震带各时段实际统计与理论结果对比

5.3.2 潜在震源区活动性参数的确定

潜在震源区活动性参数包括:震级上限 Mu,空间分布函数 f_{i,mj},椭圆等 震线长轴取向及分布概率。震级上限在划分潜在震源区时,依据潜在震源 区本身的地震活动性及地震构造特征已经确定。

1. 空间分布函数 $f_{i,m}$

在地震带内,须把地震带各震级档地震的年平均发生率分配给各相应的潜在震源区。这里采用空间分布函数,根据各潜在震源区发生不同震级档地震可能性的大小,对统计区各震级档的地震年平均发生率进行不等权分配。空间分布函数 *f*_{*l*,*m*_{*j*}的物理含义是地震带内发生一个 *m*_{*j*}档震级的地震落在第 i 个潜在震源区内概率的大小。在同一地震带内 *f*_{*l*,*m*_{*j*}满足归一条件:}}

即对不同震级档 mi有:

$$\sum_{i=1}^n f_{i,m_j} = 1$$

其中, n 为地震带内第 m_i档潜在震源区的总数。

本报告中,m_j共分成7个震级档,即4.0~4.9,5.0~5.4,5.5~5.9,6.0~6.4,6.5~6.9,7.0~7.4,≥7.5。

决定空间分布函数大小的因子考虑如下:

对 6.0 级以下的低震级潜在震源区,主要考虑小震空间分布密度(单位面积的发震概率)。这里对不同活动水平地区,据实际地震平均发生率作了不等权分配。

对 6.5 级以上的潜在震源区,主要考虑以下几方面的因子:

① 以往区划工作成果;

② 中国大陆长期地震活动的构造背景;

③ 具备发生7级以上地震的构造上的空段;

④ 潜在震源区的可靠程度。

2. 等震线长轴取向及分布概率

我国大陆地震等震线多呈椭圆形,地震烈度在长轴和短轴方向衰减特 征不同。在计算各潜在震源区对场地的影响时,必须确定长轴方向。所以 对每个潜在震源区都给出方向性因子:即给出互相垂直的两个可能的长轴 走向 θ₁和θ₂和相应的概率值 P₁和P₂。本区域内断裂活动以走滑为主,各潜 在震源长轴取向大多与各潜在震源区构造走向一致。对某些具有共轭断层 的潜在震源区,依照两个方向作用的大小,给予不同的概率值。各潜在震 源区具体的取向角度与分布概率也列于表 5.3-1 中。表中的角度是指断裂 构造走向与正东方向间的夹角。

震级档 编号	4.0-4.9	5.0-5.4	5.5-5.9	6.0-6.4	6.5-6.9	7.0-7.4	≥7.5	Mu	θ ₁ (°)	P ₁
背景 13	0.00811	0.02172	0	0	0	0	0	5.5	0	0.5
背景 23	0.03396	0.03679	0	0	0	0	0	5.5	0	0.5
阜阳 56	0.00663	0.00473	0.01771	0	0	0	0	6.0	65	1.0
固始 57	0.00678	0.00477	0.01771	0	0	0	0	6.0	65	1.0
麻城 61	0.00651	0.00466	0.01178	0.0123	0	0	0	6.5	60	1.0
郯城 49	0.00644	0.01207	0.0112	0.02277	0	0	0	6.5	70	1.0

表 5.3-1 区域几个主要潜在震源区 M_u 、 f_{i,m_i} 和方向性函数

天长市化工生	中区	区域性	协震安	会性评	价招生
へんりルエホ	1 1	四城庄	肥辰女	1 1 1	川怀古

泗洪 51	0.00607	0.01137	0.01027	0.02166	0.05115	0.12225	0	7.5	70	1.0
凤台 55	0.00663	0.00473	0.01771	0	0	0	0	6.0	65	1.0
合肥西 58	0.00294	0.01652	0.02008	0	0	0	0	6.0	170	1.0
明光 59	0.00336	0.01886	0.0107	0.01392	0	0	0	6.5	70	1.0
合肥 60	0.00791	0.01007	0.01672	0.02953	0	0	0	6.5	60	1.0
霍山 63	0.00712	0.00901	0.01615	0.02687	0.07281	0	0	7.0	50	1.0
潜山 65	0.00737	0.00523	0.02255	0	0	0	0	6.0	45	1.0
淮阴 71	0.01082	0.00835	0.02741	0	0	0	0	6.0		
天长 72	0.01113	0.00857	0.02379	0	0	0	0	6.0		
扬州 80	0.0074	0.01787	0.02639	0.04319	0	0	0	6.5	40	1.0
南京 81	0.00829	0.00636	0.02422	0	0	0	0	6.0	40	1.0
马鞍山 82	0.00743	0.01435	0.02159	0	0	0	0	6.0	40	1.0
贵池 83	0.00672	0.01622	0.03305	0	0	0	0	6.0	70	1.0
芜湖 85	0.00695	0.01341	0.01616	0	0	0	0	6.0	70	1.0
溧阳 87	0.01032	0.01236	0.02558	0.02151	0	0	0	6.5	50	1.0
宣城 88	0.01058	0.00817	0.01991	0	0	0	0	6.0	50	1.0
淮阴 71	0.01082	0.00835	0.02741	0	0	0	0	6.0	50	1.0

注: Mu为各潜在震源区的上限; 01为等震线长轴取向角度; P1为相应分布概率。

5.4 地震动衰减规律

2008 年美国新一代区划图编制过程中建立了一套新的强震数据库 (NGA 数据库),利用该数据库的高质量数字式强震资料,美国 5 个小组 各自产出了一套地震动参数衰减关系,简称为 NGA 衰减关系。在我国第 五代区划图的编制过程中,吸收借鉴了国际上对地震动新的认识以及衰减 关系建立过程中的新的技术方法,并使用 NGA 数据库提供的高质量数字 式强震记录,在考虑继承性和易用性的基础上,肖亮(2011 博士论文)建 立了一套美国西部基岩水平向的地震动参数衰减关系。利用新近补充的烈 度资料重新回归得到的五代图新分区地震烈度衰减关系,通过转换修正得 到了与五代图相配套的中国东部活跃区地震动参数衰减关系(据中国地震 局地球物理研究所俞言祥研究员等,2012)。 这套新的衰减关系采用了新的模型,如(5.4-1 与 5.4-2)式所示,其中 lg 表示以 10 为底的常用对数:

当 M < 6.5时,

$$\lg Y(M,R) = A_1 + B_1 M - C \lg(R + D \exp(E^*M))$$
 (5.4-1)

当 $M \ge 6.5$ 时,

$$lg Y(M,R) = A_2 + B_2 M - C lg(R + D exp(E^*M))$$
 (5.4-2)

该模型在本工作中称为分段线性模型,其主要特点在于在 6.5 级处震级项分段,用两个线性项来反映震级饱和,同时继承性地选用包含指数形式的近场饱和因子 Dexp(E*M)的震级项来反映大震近场距离饱和现象。这样的好处是避免了二次函数形式的震级项在高震级引发的过饱和效应,同时模型参数简单易于使用。

表 5.4-1、表 5.4-2 给出了东部活跃区长轴、短轴的反应谱衰减关系参数, 其中 sigma 为标准差。中强区反应谱衰减关系的适用范围为距离 0-200km, M5.0-7.0。除中强区之外其他三区,反应谱衰减关系的适用范围为距离 0-200km, M5.0-8.0。图 5.4-1 为本区基岩水平向加速度峰值衰减关系。

T(s)	A1	B1	A2	B2	С	D	Е	Sigma
PGA	2.024	0.673	3.565	0.435	2.329	2.088	0.399	0.245
0.04	2.048	0.674	3.617	0.432	2.322	2.088	0.399	0.261
0.05	2.205	0.654	3.706	0.423	2.319	2.088	0.399	0.266
0.07	2.315	0.650	3.774	0.425	2.307	2.088	0.399	0.265
0.10	2.456	0.640	3.903	0.417	2.297	2.088	0.399	0.261
0.12	2.493	0.637	3.855	0.427	2.294	2.088	0.399	0.261
0.16	2.617	0.632	3.798	0.449	2.306	2.088	0.399	0.261
0.20	2.558	0.643	3.680	0.470	2.309	2.088	0.399	0.261
0.24	2.320	0.675	3.632	0.472	2.290	2.088	0.399	0.264
0.26	2.094	0.696	3.541	0.472	2.249	2.088	0.399	0.270
0.30	1.878	0.715	3.426	0.477	2.211	2.088	0.399	0.274
0.34	1.852	0.715	3.304	0.491	2.212	2.088	0.399	0.273
0.40	1.501	0.765	3.262	0.494	2.214	2.088	0.399	0.274
0.50	1.358	0.776	3.026	0.519	2.214	2.088	0.399	0.276
0.60	1.004	0.814	2.885	0.524	2.187	2.088	0.399	0.283
0.80	0.650	0.847	2.608	0.545	2.174	2.088	0.399	0.291
1.00	0.226	0.895	2.409	0.559	2.157	2.088	0.399	0.300
1.20	0.006	0.917	2.227	0.574	2.159	2.088	0.399	0.305
1.50	-0.095	0.909	1.785	0.619	2.157	2.088	0.399	0.305
1.70	-0.196	0.909	1.426	0.655	2.146	2.088	0.399	0.302
2.00	-0.666	0.936	1.061	0.686	2.126	2.088	0.399	0.303

表 5.4-1 东部活跃区基岩水平向加速度反应谱衰减关系的系数(长轴)

天长了	市化工	集、	P区	区	域性	地道	霞安	全性	评	价报	告

2.40	-0.781	0.917	0.709	0.687	2.011	2.088	0.399	0.343
3.00	-1.014	0.920	0.279	0.720	1.972	2.088	0.399	0.340
4.00	-1.244	0.909	-0.368	0.773	1.937	2.088	0.399	0.336
5.00	-1.417	0.900	-0.880	0.817	1.906	2.088	0.399	0.333
6.00	-1.432	0.859	-1.432	0.859	1.857	2.088	0.399	0.333

表 5.4-2 东部活跃区基岩水平向加速度反应谱衰减关系的系数(短轴)

T(s)	A1	B1	A2	B2	С	D	Е	Sigma
PGA	1.204	0.664	2.789	0.420	2.016	0.944	0.447	0.245
0.04	1.241	0.663	2.837	0.418	2.010	0.944	0.447	0.261
0.05	1.393	0.645	2.933	0.408	2.007	0.944	0.447	0.266
0.07	1.517	0.639	3.005	0.411	1.997	0.944	0.447	0.265
0.10	1.665	0.629	3.140	0.402	1.988	0.944	0.447	0.261
0.12	1.707	0.625	3.091	0.412	1.985	0.944	0.447	0.261
0.16	1.814	0.622	3.053	0.431	1.997	0.944	0.447	0.261
0.20	1.779	0.628	2.918	0.454	1.999	0.944	0.447	0.261
0.24	1.533	0.662	2.868	0.457	1.983	0.944	0.447	0.264
0.26	1.309	0.685	2.786	0.458	1.948	0.944	0.447	0.270
0.30	1.095	0.707	2.677	0.464	1.915	0.944	0.447	0.274
0.34	1.068	0.706	2.558	0.477	1.916	0.944	0.447	0.273
0.40	0.698	0.759	2.501	0.482	1.919	0.944	0.447	0.274
0.50	0.557	0.769	2.265	0.507	1.919	0.944	0.447	0.276
0.60	0.196	0.810	2.122	0.514	1.897	0.944	0.447	0.283
0.80	-0.162	0.844	1.851	0.535	1.887	0.944	0.447	0.291
1.00	-0.599	0.895	1.644	0.550	1.873	0.944	0.447	0.300
1.20	-0.815	0.915	1.455	0.567	1.875	0.944	0.447	0.305
1.50	-0.910	0.907	1.087	0.600	1.871	0.944	0.447	0.330
1.70	-1.000	0.906	0.869	0.619	1.861	0.944	0.447	0.338
2.00	-1.449	0.934	0.516	0.632	1.779	0.944	0.447	0.342
2.40	-1.524	0.911	0.002	0.677	1.748	0.944	0.447	0.343
3.00	-1.733	0.912	-0.414	0.710	1.716	0.944	0.447	0.340
4.00	-1.932	0.898	-1.038	0.761	1.686	0.944	0.447	0.336
5.00	-2.075	0.887	-1.532	0.804	1.659	0.944	0.447	0.333
6.00	-2.041	0.841	-2.041	0.841	1.617	0.944	0.447	0.333

图 5.4-1 水平向基岩峰值加速度衰减关系图

5.5 地震危险性分析结果

根据潜在震源区划分、地震活动性参数和地震动衰减关系确定的结果, 利用概率地震危险性分析方法,对目标区工作范围内13个控制性钻孔所在 位置分别进行地震危险性分析计算,各计算场点的50年超越概率63%、 10%、2%条件下的基岩水平向峰值加速度计算结果见表5.5-1,图5.5-1至 5.5-3为基岩水平向峰值加速度计算结果的平面分布图。

通过对相同超越概率水平下各基岩控制点的基岩反应谱进行对比发现,目标区范围内的各控制点基岩反应谱形状基本一致,仅基岩峰值加速度存在一定差异,各计算控制点相同超越概率水平下的基岩峰值加速度由西向东逐渐增大,但总体相差不大。根据计算结果统计,50年超越概率63%的基岩水平向峰值加速度介于20.8~20.9gal,极差为0.1gal,平均值为21.85gal,极差占平均值的0.2%;50年超越概率10%的基岩水平向峰值加速度介于61.7~61.9gal,极差为0.2gal,平均值为61.8gal,极差占平均值的0.3%;50年超越概率2%的基岩水平向峰值加速度介于107.7~107.9gal,极差为0.2gal,平均值为107.8gal,极差占平均值的0.1%。

钻孔编号	50 年超越概率						
	63%	10%	2%				
ZK1	20.9	61.9	107.9				
ZK2	20.9	61.8	107.8				
ZK3	20.9	61.8	107.8				
ZK4	20.9	61.8	107.8				

表 5.5-1 基岩水平向峰值加速度计算结果(单位: gal)

天长市化工集	中区	区域性	地震安	全性评	价报告

ZK5	20.8	61.8	107.8
ZK6	20.9	61.7	107.8
ZK7	20.8	61.8	107.8
ZK8	20.9	61.8	107.8
ZK9	20.8	61.8	107.8
ZK10	20.9	61.7	107.7
ZK11	20.9	61.7	107.7
ZK12	20.9	61.7	107.7
ZK13	20.9	61.7	107.7

图 5.5-1 目标区 50 年 63%基岩水平向峰值加速度分布图(单位: gal)

天长市化工集中区区域性地震安全性评价报告

图 5.5-2 目标区 50 年 10%基岩水平向峰值加速度分布图(单位: gal)

图 5.5-3 目标区 50 年 2%基岩水平向峰值加速度分布图(单位: gal)

本次从目标区范围内选取ZK8为典型计算控制点,表5.5-2为典型计算 控制点处50年超越概率63%、10%、2%条件下的基岩加速度反应谱值,阻 尼比为0.05。图5.5-4为典型计算控制点处的基岩水平向峰值加速度超越概 率曲线,图5.5-5为典型计算控制点处的不同超越概率水平下基岩峰值加速 度反应谱曲线。

钻孔编号		ZK8	
周期(s)	50年63%	50年10%	50年2%
PGA(gal)	20.9	61.8	107.8
0.04	23.586	71.28	126.613
0.05	27.324	82.839	147.496
0.07	35.259	106.6	189.392
0.10	45.183	135.669	240.193
0.12	48.077	143.447	253.36
0.16	56.908	170.983	302.647
0.20	56.206	169.001	299.058
0.24	51.66	154.438	271.624
0.26	47.71	142.301	251.819
0.30	44.281	131.897	231.232
0.34	41.032	122.18	215.012
0.40	34.009	102.789	180.731
0.50	28.249	86.22	151.992
0.60	23.454	72.714	129.24
0.80	17.22	54.804	98.137
1.00	13.592	44.829	81.402
1.20	11.079	37.957	70.599
1.50	8.405	29.477	55.883
1.70	7.185	25.612	49.07
2.00	5.563	20.455	39.624
2.40	4	14.794	28.924
3.00	2.971	11.032	21.73
4.00	1.739	6.673	13.382
5.00	1.111	4.624	9.7
6.00	0.695	3.001	6.729

表 5.5-2 不同超越概率水平下典型计算控制点的基岩地震动加速度反应谱(gal)

图 5.5-4 ZK8 孔处不同超越概率水平下典型计算控制点的基岩加速度超越概率曲线

图 5.5-5 ZK8 孔处不同超越概率水平下典型计算控制点的基岩加速度反应谱曲线

表5.5-2给出了ZK8控制点处基岩水平加速度起主要贡献的潜在震源区 及其贡献百分比值,结果表明,对目标区地震危险性影响较大的潜源为天 长(72)潜源、泗洪(51号)潜源及目标区所在背景源(23号)等。表明

场地主要受近、中场潜源和背景源的共同影响,符合该工作区周围地震构 造环境和地震活动特征,也符合历史地震影响的特征。

表 5.5-3 潜在震源区对目标区场地基岩水平加速度的贡献百分比(ZK10)

					T=0s
50年63	3%	50 年	10%	50年2	%
天长(72)	60.399	天长(72)	100	天长(72)	100
泗洪(51)	18.575				
背景源(23)	11.653				
扬州(80)	7.286				
宿迁 (50)	1.398				
莒县(43)	0.689				
					T=2s
50年63	3%	50年	10%	50年2	T=2s %
50年63 天长(72)	3% 65.563	50年 天长(72)	10%	50年2 天长(72)	T=2s % 100
50年63 天长(72) 泗洪(51)	3% 65.563 16.309	50年 天长(72)	10%	50年2 天长(72)	T=2s % 100
50年63 天长(72) 泗洪(51) 背景源(23)	3% 65.563 16.309 12.021	50年 天长(72)	10% 100	50年2 天长(72)	T=2s % 100
50年63 天长(72) 泗洪(51) 背景源(23) 扬州(80)	65.563 16.309 12.021 4.999	50年 天长(72)	10%	50年2 天长(72)	T=2s % 100
50年63 天长(72) 泗洪(51) 背景源(23) 扬州(80) 莒县(43)	3% 65.563 16.309 12.021 4.999 0.677	50年 天长(72)	10%	50年2 天长(72)	T=2s % 100

第六章 目标区地震动参数确定

大量震害及近场强震观测资料表明,局部场地条件对地表地震动有着 十分显著的影响。因此,要正确地给出场地的设计地震动参数,必须考虑 局部场地条件的影响,该影响可通过场地土层地震反应分析来评价。本章 以基岩加速度反应谱和峰值为目标,用数值模拟的方法合成基岩地震动时 程,结合局部场地条件建立土层反应分析模型,在此基础上进行场地地震 反应分析计算,给出本工程场区的地面地震动参数。

6.1 目标区场地基岩的人造地震动时程

以基岩加速度反应谱和峰值为目标,用数值模拟方法合成地震动时程, 作为场地土层地震反应分析的地震动输入值。

6.1.1 方法简介

采用《工程场地地震安全性评价》(GB17741-2005)所推荐的方法, 该地震动合成方法的主要思路为:

(1)反应谱与功率谱的近似转换关系,将目标反应谱转换成相应的功率 谱,转换关系为:

$$S(\omega) = \frac{\varepsilon}{\pi\omega} S_a^2 (\omega) / \left\{ -Ln \left[-\frac{\pi}{\omega T} Ln(1-r) \right] \right\}$$
(6.1-1)

其中: $S(\omega)$: 功率谱; ε : 阻尼比; $S_a(\omega)$: 目标反应谱; T: 持续时间; r: 超过目标反应谱值的概率。

(2)用三角级数叠加法,生成零均值的平稳高斯过程。

$$X(t) = \sum_{i=0}^{n} A_i \cos(\omega_i t + \phi_i)$$
(6.1-2)

其中: $A_i = [4S(\omega_i)\Delta\omega]^{0.5}$,初相位 ϕ_i 为 $[0-2\pi]$ 均匀分布的随机变量。 (3)将平稳时程乘以非平稳强度包线,得到非平稳的加速度时程。

$$a(t) = \Psi(t) \cdot X(t) \tag{6.1-3}$$

非平稳包线函数为如下形式:

$$\Psi(t) = \begin{cases} \left(\frac{t}{t_1}\right)^2 & 0 < t \le t_1 \\ 1 & t_1 < t \le t_2 \\ e^{-c(t-t_2)} & t_2 < t \le T \end{cases}$$
(6.1-4)

其中: t₁: 峰值的上升段; t₂-t₁: 峰值的平稳段; T: 持续时间; c: 峰值的衰减系数。

由于式(6.1-1)表示的反应谱与功率谱的关系是近似关系,所以按初始时程a(t)计算出来的反应谱一般只近似于目标谱,符合的程度也是概率平均的。为了提高拟合精度,还需要进行迭代调整。通用的方法是按下式调整式(6.1-2)中的傅氏幅值谱。

$$A^{i+1}(\omega_k) = \frac{S_a^T(\omega_j)}{S_a(\omega_j)} A^i(\omega_k) \qquad N_{1j} < k \le N_{2j}$$
(6.1-5)

式中 $A^{i}(\omega_{k})$ 和 $A^{i+1}(\omega_{k})$ 分别为第i和i+1次迭代的结果, $S_{a}^{T}(\omega_{j})$ 和 $S_{a}(\omega_{j})$ 为第j个控制点的目标谱和计算反应谱。

采用上述方式对幅值谱调整仅局限在控制频率 ω_{j} 附近的 $N_{1j} - N_{2j}$ 个 傅里叶分量。通常 ω_{1j} 和 ω_{2j} 按下述方法选取:

$$\omega_{1j} = \frac{1}{2} \left(\omega_{j-1} + \omega_j \right) \qquad \omega_{2j} = \frac{1}{2} \left(\omega_j + \omega_{j+1} \right) \tag{6.1-6}$$

频段 $\omega_{1j} - \omega_{2j}$ 被称为 ω_j 的主控频段。对于目标谱控制点 ω_j ,迭代运算 时只改变主控频段的幅值谱,这是因为在整个频段中,由于共振原理主控 频段频率分量的改变对 ω_j 反应谱的变化最为敏感,另一方面调整幅值谱时, 应尽量将幅值谱变化的影响局限在特定的控制频率 ω_j 附近,以避免在拟合 ω_j 频率处目标反应谱时对其邻近控制频率处的反应谱带来过大的影响,对 幅值谱进行多次迭代修正,即可使其反应谱向目标谱逼近。在对幅值谱进 行迭代修正的同时,还对相位谱进行迭代修正。

6.1.2 基岩地震动时程合成参数

地震动的振幅、频谱和持时是地震动特性的三要素,在此基础上合成 相应的地震动时程。地震动的振幅即基准控制点的基岩峰值加速度在第五 章地震危险性分析中已得到,频谱特征即50年超越概率为63%、10%、2% 的地震动目标谱,见表5.5-2。

地震动持时的确定,主要根据地震危险性分析所得结果与地震动时程 合成过程中地震动能量匹配的原则,即以地震危险性分析所得的等效震级 与距离,以及由地震动持时参数统计经验关系所得的地震动持时参数作为 参考,在地震动时程合成过程中,综合考虑地震动反应谱与强度包线之间 的匹配情况,调整地震动持时参数值,并加以最终确定。本次工作分别得 到对应50年超越概率为63%、10%、2%的地震动持时参数见表6.1-1。

概率水平	T_1 (s)	T_2 (s)	с
50年63%	3.0	11.0	0.17
50年10%	3.0	13.0	0.15
50年2%	2.5	18.0	0.14

表 6.1-1 地震动持时参数表

6.1.3 合成基岩加速度时程

根据以上合成原理及有关参数,对基岩基准控制点目标谱插值使周期 控制点达到55个,分别对50年超越概率63%、10%、2%的目标谱取不同随 机初始相位,各合成5条基岩地震动加速度时程曲线。采用人工合成加速度 转化为频域中的拟合谱,拟合谱与输入计算的目标谱比较,相对误差小于 5%,如图6.1-1所示。图6.1-2为基岩基准控制点处50年超越概率63%、10%、 2%的基岩加速度反应谱拟合样本的相关系数热力图,不难发现,各样本间 相关系数不超过0.15,符合相关规范要求,即认为各拟合时程样本之间独 立不相关。

50年63%

图 6.1-1 基准控制点不同超越概率基岩地震动拟合情况

图 6.1-2 基岩基准控制点不同超越概率基岩地震动时程拟合各样本相关系数热力图

6.2 目标区场地一维土层地震反应计算方法简介

本项目在工作区域范围基于一维场地模型来考虑场地条件对地震地 面运动的影响。一维场地模型地震地面运动影响的分析,采用《目标区范 围内的场地地震安全性评价》(GB17741-2005)所推荐的一维土层剪切动 力反应分析的等效线性化方法,其基本原理如下:

假设剪切波从粘弹性半无限基岩空间垂直入射到水平成层(N层)非 线性土体中,并向上传播。对于这一计算模型,根据波传播理论,利用时 频变换技术(即傅氏变换法),结合土体非线性特性的复阻尼模拟及等效 线性化处理方法,可以计算出场地介质动力反应值。

设有一剪切谐波自计算基底垂直向上入射并在土层中传播,则根据波动理论及复阻尼理论可知,每一土层中介质运动必须满足波动方程:

$$\rho_{j} \frac{\partial^{2} U_{j}(x,t)}{\partial t^{2}} = G_{j}^{c} \frac{\partial^{2} U_{j}(x,t)}{\partial x^{2}}$$
(6.2-1)

式中, $U_{j}(x,t)$ 一第j土层中介质反应的位移值; ρ_{j} 一第j土层中介质的密度; G_{i}^{c} 一第j土层中介质的动力复剪切模量; G_{i}^{c} 由下式给出:

$$G_{j}^{c} = \left[1 + 2\lambda_{j}(\gamma_{je})i\right]G_{jd}(\gamma_{je})G_{jo}$$

$$(6.2-2)$$

其中, $i = (-1)^{0.5}$; G_{jo} 一 第 $j \pm E$ 中介质的最大动力剪切模量; $G_{jd}(\gamma_{je}), \lambda_j(\gamma_{je})$ 一 第 $j \pm E$ 中介质的等效动力剪切模量无量纲系数及滞回阻 尼比; γ_{je} 一 第 $j \pm E$ 中层中点介质的等效动力剪切应变值。

各土层之间介质运动满足位移连续条件和应力连续条件:

$$U_{j}(x,t)|_{x=H_{j}} = U_{j+1}(x,t)|_{x=0}$$
(6.2-3)

$$\tau_{j}(x,t)|_{x=H_{j}} = \tau_{j+1}(x,t)|_{x=0}$$
(6.2-4)

$$\tau_1(x,t)\big|_{x=0} = 0 \tag{6.2-5}$$

其中,H_j为第*j*土层的层厚,且规定x坐标以垂直向下方向为正方向,坐标原点置于每一土层层顶面位置。求解方程式(6.2-1),并利用已知的计算基底入射波值可得到土层中介质反应量的频域值,再利用傅氏变换方法可以得到土层中介质反应量的时域值。

考虑到土体的非线性特性,各土层等效动力剪切模量的无量纲系数和 滞回阻尼比都是等效剪应变的函数。因此,实际计算时先假定每一土层的 层内介质反应的初始等效动力剪切应变,利用上述方法进行反应计算,并 计算出相应的各土层内中点处介质的剪应变反应的最大值,而后取每一土 层内层中点处介质反应的最大剪应变值乘以折减系数(这里取0.65)的值 作为该土层中介质的等效剪应变的计算值。比较计算所用等效剪切应变及 计算所得等效剪切应变相对应的等效动力剪切模量和滞回阻尼比值,若它 们的相对误差都小于给定的允许误差(这里取0.05),则认为土体非线性 特性的考虑满足了要求,否则以最新计算所得等效剪切应变值取代初始等 效剪切应变值,并重复上述计算过程,直到相对误差都小于允许误差为止。

6.3 目标区场地一维计算土层模型动力参数的确定

进行场地土层地震动力反应分析,需要土层剖面的土层分层厚度及土 层土体性状描述资料,同时也需要土层中土体的力学特性资料。它们包括 土体的波速值(剪切波速值)、土体的密度值及土体动力非线性特性参数 值。在进行场地土层地震动反应分析时,必须先确定计算场地模型的这些 动力参数。

本项目通过场地工程地震条件勘测和现有资料收集工作,获取了大量 工程地质钻孔资料,同时对钻孔进行了现场剪切波速测试,从钻孔中取得 部分典型原状土样进行土体动力非线性实验。在此基础上建立了目标工作 区13个控制性钻孔的一维土层反应分析模型,各钻孔计算采用场地模型的 剖面与力学特性参数见表6.3-1。

它早	十日夕称	底层深度	土层厚度	剪切波速	密度	上米
)丁 与	上広右你	(m)	(m)	(m/s)	(g/cm^3)	工关
1	素填土	0.5	0.5	170	1.85	1
2	粉质黏土	3.5	3	184	1.95	2
3	粉质黏土	6.5	3	215	1.95	2
4	粉质黏土	9.5	3	227	1.98	3
5	粉质黏土	12.5	3	243	1.98	3
6	粉质黏土	15.5	3	237	1.98	3
7	粉质黏土	18.5	3	243	2.00	4
8	粉质黏土	21.5	3	251	2.00	4
9	粉质黏土	25	3.5	254	2.00	4
10	粉细砂	27	2	284	2.05	23
11	粉细砂	30	3	305	2.05	23
12	全风化泥岩	35	5	411	2.10	25
13	全风化泥岩	40	5	421	2.10	25
14	全风化泥岩	45	5	460	2.10	25
15	全风化泥岩	50	5	485	2.10	25
16	计算基底	55		521	2.15	26

表6.3-1(1) ZK1土层反应分析计算模型

表6.3-1(2) ZK2土层反应分析计算模型

它旦	十日夕称	底层深度	土层厚度	剪切波速	密度	上米
厅与	上层石协	(m)	(m)	(m/s)	(g/cm^3)	工矢

1	素填土	0.7	0.7	179	1.85	1
2	粉质黏土	3.7	3	183	1.95	2
3	粉质黏土	6.7	3	178	1.95	2
4	粉质黏土	9.7	3	166	1.98	3
5	粉质黏土	12.7	3	214	1.98	3
6	粉质黏土	15.7	3	244	1.98	3
7	粉质黏土	18.7	3	260	2.00	4
8	粉质黏土	21.7	3	287	2.00	4
9	粉质黏土	25.6	3.9	314	2.00	4
10	粉细砂	29.6	4	322	2.05	23
11	粉细砂	33.6	4	330	2.05	23
12	黏土	37	3.4	342	2.10	21
13	全风化泥岩	42	5	429	2.10	25
14	全风化泥岩	47	5	494	2.10	25
15	全风化泥岩	52	5	515	2.10	25
16	计算基底	53		179	2.15	26

天长市化工集中区区域性地震安全性评价报告

表6.3-1(3) ZK3土层反应分析计算模型

序号	土层名称	底层深度	土层厚度	剪切波速	密度	土类
		(m)	(m)	(m/s)	(g/cm^3)	
1	素填土	0.5	0.5	181	1.85	1
2	粉质黏土	3.5	3	199	1.95	5
3	粉质黏土	6.5	3	226	1.95	5
4	粉质黏土	9.5	3	233	1.98	6
5	粉质黏土	12.5	3	236	1.98	6
6	粉质黏土	15.5	3	245	1.98	6
7	粉质黏土	18.5	3	260	2.00	7
8	粉质黏土	21.5	3	288	2.00	7
9	粉质黏土	24.5	3	336	2.00	7
10	粉质黏土	27.8	3.3	360	2.00	7
11	粉细砂	33	5.2	383	2.05	23
12	全风化泥岩	38	5	441	2.10	25
13	全风化泥岩	43	5	469	2.10	25
14	全风化泥岩	48	5	501	2.10	25
15	全风化泥岩	53	5	518	2.10	25
16	计算基底	56		522	2.15	26

序号	土层名称	底层深度	土层厚度	剪切波速	密度	土类
		(m)	(m)	(m/s)	(g/cm ³)	
1	素填土	1	1	169	1.85	1
2	粉质黏土	4	3	180	1.95	5
3	粉质黏土	7	3	188	1.95	5

表6.3-1(4) ZK4土层反应分析计算模型

4	粉质黏土	10	3	233	1.98	6
5	粉质黏土	13	3	197	1.98	6
6	粉质黏土	16	3	236	1.98	6
7	粉质黏土	19	3	234	2.00	7
8	粉质黏土	22	3	247	2.00	7
9	粉质黏土	25	3	268	2.00	7
10	粉质黏土	27.2	2.2	284	2.00	7
11	粉细砂	31.2	4	346	2.05	23
12	粉细砂	36.2	5	348	2.05	23
13	粉细砂	36.8	0.6	375	2.05	23
14	全风化泥岩	41.8	5	382	2.10	25
15	全风化泥岩	46.8	5	392	2.10	25
16	全风化泥岩	51.8	5	444	2.10	25
17	全风化泥岩	56.8	5	479	2.10	25
18	计算基底	60		512	2.15	26

表6.3-1(5) ZK5土层反应分析计算模型

序号	十巨夕称	底层深度	土层厚度	剪切波速	密度	十米
11. 3	工石工小	(m)	(m)	(m/s)	(g/cm^3)	工天
1	素填土	1.5	1.5	172	1.85	1
2	粉质黏土	4.5	3	183	1.95	9
3	粉质黏土	7.5	3	181	1.95	9
4	粉质黏土	10.5	3	194	1.98	8
5	粉质黏土	13.5	3	250	1.98	8
6	粉质黏土	16.5	3	260	1.98	8
7	粉质黏土	19.5	3	262	2.00	10
8	粉质黏土	22.5	3	302	2.00	10
9	粉质黏土	26.5	4	340	2.00	10
10	粉质黏土	28.6	2.1	388	2.00	10
11	粉细砂	33.6	5	391	2.05	23
12	粉细砂	38	4.4	395	2.05	23
13	全风化泥岩	43	5	437	2.10	25
14	全风化泥岩	48	5	482	2.10	25
15	计算基底	50		508	2.15	26

表6.3-1(6) ZK6土层反应分析计算模型

序号	土层名称	底层深度 (m)	土层厚度 (m)	剪切波速 (m/s)	密度 (g/cm ³)	土类
1	素填土	2	2	141	1.85	1
2	粉质黏土	5	3	160	1.95	9
3	粉质黏土	8	3	173	1.95	9
4	粉质黏土	11	3	181	1.98	8
5	粉质黏土	14	3	186	1.98	8

天长市化工集中区区域性地震安全性评价报告

6	粉质黏土	17	3	195	1.98	8
7	粉质黏土	20	3	208	2.00	10
8	粉质黏土	23	3	255	2.00	10
9	粉质黏土	26.4	3.4	295	2.00	10
10	中粗砂	31.4	5	355	2.05	24
11	中粗砂	35.4	4	373	2.05	24
12	中粗砂	37.1	1.7	388	2.05	24
13	全风化泥岩	42.1	5	406	2.10	25
14	全风化泥岩	47.1	5	420	2.10	25
15	全风化泥岩	52.1	5	463	2.10	25
16	全风化泥岩	57.1	5	481	2.10	25
17	计算基底	62.1		507	2.10	25

表6.3-1(7) ZK7土层反应分析计算模型

序号	十巨夕称	底层深度	土层厚度	剪切波速	密度	十米
1. 7	上/公 11 1小	(m)	(m)	(m/s)	(g/cm^3)	工大
1	素填土	0.5	0.5	160	1.85	1
2	粉质黏土	3.5	3	173	1.95	11
3	粉质黏土	6.5	3	160	1.95	11
4	粉质黏土	9.5	3	171	1.98	8
5	粉质黏土	12.5	3	225	1.98	8
6	粉质黏土	15.5	3	272	1.98	8
7	粉质黏土	18.5	3	278	2.00	10
8	粉质黏土	21.5	3	301	2.00	10
9	粉质黏土	25.6	4.1	316	2.00	10
10	中粗砂	27.4	1.8	326	2.05	24
11	黏土	30.4	3	350	2.05	21
12	全风化泥岩	35.4	5	370	2.10	25
13	全风化泥岩	40.4	5	390	2.10	25
14	全风化泥岩	45.4	5	454	2.10	25
15	全风化泥岩	50.4	5	497	2.10	25
16	计算基底	55.4		515	2.10	25

表6.3-1(8) ZK8土层反应分析计算模型

序号	土层名称	底层深度 (m)	土层厚度 (m)	剪切波速 (m/s)	密度 (g/cm ³)	土类
1	素填土	0.5	0.5	155	1.85	1
2	粉质黏土	3.5	3	178	1.95	11
3	粉质黏土	6.5	3	228	1.95	11
4	粉质黏土	9.5	3	244	1.98	14
5	粉质黏土	12.5	3	250	1.98	14
6	粉质黏土	15.5	3	247	1.98	14
7	粉质黏土	18.5	3	265	2.00	12

第六章 目标区地震动参数确定

8	粉质黏土	21.5	3	268	2.00	12
9	粉质黏土	26.5	5	274	2.00	12
10	粉质黏土	30.4	3.9	281	2.05	12
11	粉细砂	35.4	5	298	2.05	23
12	粉细砂	38.9	3.5	304	2.05	23
13	黏土	43.9	5	320	2.05	22
14	黏土	48.9	5	328	2.05	22
15	黏土	53.9	5	338	2.05	22
16	黏土	57	3.1	350	2.05	22
17	全风化泥岩	62	5	486	2.10	25
18	计算基底	67		517	2.10	25

表6.3-1(9) ZK9土层反应分析计算模型

它早	十巨夕称	底层深度	土层厚度	剪切波速	密度	十米
厅 与	上层石协	(m)	(m)	(m/s)	(g/cm^3)	工关
1	素填土	0.5	0.5	156	1.85	1
2	粉质黏土	3.5	3	178	1.95	13
3	粉质黏土	粉质黏土 6.5 3 215		215	1.95	13
4	粉质黏土	9.5	3	235	1.95	13
5	粉质黏土	12.5	3	257	1.98	14
6	粉质黏土	15.5	3	266	1.98	14
7	粉质黏土	18.5	3	273	2.00	15
8	粉质黏土	20	1.5	286	2.00	15
9	中粗砂	25	5	305	2.05	24
10	中粗砂	30	5	340	2.05	24
11	中粗砂	35	5	369	2.05	24
12	中粗砂	40	5	375	2.05	24
13	中粗砂	44.5	4.5	397	2.05	24
14	全风化泥岩	49.5	5	415	2.10	25
15	全风化泥岩	54.5	5	442	2.10	25
16	全风化泥岩	57.5	3	482	2.10	25
17	计算基底	60		510	2.15	26

表6.3-1(10) ZK10土层反应分析计算模型

序号	十层名称	底层深度	土层厚度	剪切波速	密度	十类
11 1		(m)	(m)	(m/s)	(g/cm^3)	工人
1	素填土	0.5	0.5	155	1.85	1
2	粉质黏土	3.5	3	183	1.95	13
3	粉质黏土	6.5	3	222	1.95	13
4	粉质黏土	9.5	3	248	1.95	13
5	粉质黏土	12.5	3	262	1.98	14
6	粉质黏土	15.5	3	278	1.98	14

天长市化工集中区区域性地震安全性评价报告

7	粉质黏土	18.5	3	296	2.00	15
8	粉质黏土	21.5	3	301	2.00	15
9	粉质黏土	24	2.5	307	2.00	15
10	粉细砂	29	5	311	2.05	23
11	粉细砂	34	5	325	2.05	23
12	粉细砂	38	4	351	2.05	23
13	粉细砂	42	4	363	2.05	24
14	黏土	46	4	389	2.05	22
15	黏土	50	4	386	2.05	22
16	计算基底	55		503	2.15	26

表6.3-1(11) ZK11土层反应分析计算模型

序号	十巨夕称	底层深度	土层厚度	剪切波速	密度	十米
)1. Э	上江山你	(m)	(m)	(m/s)	(g/cm^3)	工大
1	素填土	0.5	0.5	151	1.85	1
2	粉质黏土	3.5	3	167	1.95	13
3	粉质黏土	6.5	3	200	1.95	13
4	粉质黏土	9.5	3	202	1.95	13
5	粉质黏土	12.5	3	227	1.98	14
6	粉质黏土	15.5	3	248	1.98	14
7	粉质黏土	18.5	3	259	2.00	15
8	粉质黏土	21.5	3	274	2.00	15
9	粉质黏土	24.5	3	294	2.00	15
10	粉质黏土	27.5	3	300	2.05	16
11	粉质黏土	30.5	3	309	2.05	16
12	粉质黏土	32	1.5	347	2.05	16
13	粉细砂	35	3	384	2.05	23
14	粉细砂	40	5	385	2.05	23
15	粉细砂	44	4	386	2.05	23
16	黏土	47	3	428	2.05	22
17	黏土	50	3	446	2.05	22
18	计算基底	55		509	2.15	26

表6.3-1(12) ZK12土层反应分析计算模型

序号	土层名称	底层深度 (m)	土层厚度 (m)	剪切波速 (m/s)	密度 (g/cm ³)	土类
1	素填土	0.5	0.5	150	1.85	1
2	粉质黏土	3.5	3	186	1.95	17
3	粉质黏土	6.5	3	225	1.95	17
4	粉质黏土	9.5	3	233	2.00	18
5	粉质黏土	12.5	3	239	2.00	18
6	粉质黏土	15.5	3	218	2.00	18
7	粉质黏土	17.6	2.1	221	2.00	18
8	细砂	22.6	5	238	2.05	23

第六章 目标区地震动参数确定

9	细砂	27.6	5	281	2.05	23
10	细砂	32.6	5	321	2.05	23
11	细砂	37.6	5	360	2.05	23
12	细砂	42.6	5	379	2.05	23
13	细砂	43.7	1.1	392	2.05	23
14	黏土	48.7	5	427	2.05	22
15	黏土	53.7	5	443	2.05	22
16	黏土	58.7	5	454	2.05	22
17	计算基底	63		522	2.05	22

表6.3-1(13) ZK13土层反应分析计算模型

这是	十三夕称	底层深度	土层厚度	剪切波速	密度	十米
)1, 4	上広石柳	(m)	(m)	(m/s)	(g/cm^3)	上大
1	杂填土	3.1	3.1	175	1.85	1
2	粉质黏土	6.1	3	197	1.95	19
3	粉质黏土	9.1	3	191	1.95	19
4	粉质黏土	12.1	3	199	1.95	19
5	粉质黏土	15.1	3	210	2.00	18
6	粉质黏土	18.1	3	227	2.00	18
7	粉质黏土	21.1	3	241	2.05	20
8	粉质黏土	25.1	4	262	2.05	20
9	粉质黏土	28.6	3.5	305	2.05	20
10	中粗砂	33.6	5	348	2.05	24
11	中粗砂	38.6	5	374	2.05	24
12	中粗砂	41.2	2.6	385	2.05	24
13	黏土	46.2	5	426	2.05	22
14	黏土	51.2	5	448	2.05	22
15	黏土	55	3.8	454	2.05	22
16	计算基底	60		504	2.15	26

钻孔计算模型中各土层土体动力非线性参数见表6.3-2。在场地进行钻 孔勘探和剪切波速测试工作时,取得23组土体的原状土样,委托北京震科 经纬防灾技术研究院进行室内土体的密度值与土体动力非线性特性实验 (详见第4章)。其中,编号1土类为填土,其动力非线性参数选用中国地 震局工程力学研究所袁晓铭研究员等(2001)得到的推荐值,2~20土类均为 实测粉质黏土,21-22为实测黏土,23为实测细砂,24为中粗砂,25土类为 全~强风化砂岩,26土类为中风化砂岩(计算基底),24-26动力非线性参 数选用中国地震局行业标准中的推荐值得到的计算模型中各类土的动力 非线性参数。

表 6.3-2 各土层的土体动力非线性参数

土类号	会粉									
	少奴	0.05	0.1	0.5	1	5	10	50	100	

1	G/Gmax	0.9600	0.9500	0.8000	0.7000	0.3000	0.2000	0.1500	0.1000
1	λd	0.0250	0.0280	0.0300	0.0350	0.0800	0.1000	0.1100	0.1200
-	G/Gmax	0.9941	0.9885	0.9474	0.9018	0.6567	0.4929	0.1676	0.0926
2	λd	0.0144	0.0175	0.0321	0.0436	0.0862	0.1082	0.1452	0.1529
2	G/Gmax	0.9939	0.9877	0.9409	0.8888	0.6248	0.4625	0.1600	0.0910
3	λd	0.0147	0.0182	0.0347	0.0474	0.0919	0.1130	0.1466	0.1536
4	G/Gmax	0.9949	0.9901	0.9543	0.9141	0.6869	0.5248	0.1814	0.0996
4	λd	0.0136	0.0165	0.0303	0.0411	0.0819	0.1037	0.1420	0.1502
5	G/Gmax	0.9938	0.9879	0.9441	0.8958	0.6425	0.4786	0.1623	0.0903
5	λd	0.0148	0.0182	0.0342	0.0465	0.0901	0.1116	0.1467	0.1539
(G/Gmax	0.9938	0.9874	0.9386	0.8844	0.6146	0.4527	0.1567	0.0896
0	λd	0.0148	0.0185	0.0358	0.0491	0.0942	0.1149	0.1474	0.1541
7	G/Gmax	0.9952	0.9906	0.9574	0.9199	0.7027	0.5416	0.1869	0.1013
/	λd	0.0133	0.0155	0.0268	0.0362	0.0752	0.0978	0.1402	0.1494
0	G/Gmax	0.9943	0.9887	0.9459	0.8979	0.6453	0.4824	0.1671	0.0942
8	λd	0.0142	0.0168	0.0301	0.0412	0.0842	0.1064	0.1442	0.1523
0	G/Gmax	0.9931	0.9869	0.9431	0.8957	0.6458	0.4800	0.1564	0.0845
9	λd	0.0155	0.0188	0.0341	0.0459	0.0895	0.1117	0.1488	0.1562
10	G/Gmax	0.9950	0.9900	0.9509	0.9062	0.6629	0.5008	0.1769	0.1002
10	λd	0.0134	0.0158	0.0281	0.0387	0.0804	0.1026	0.1414	0.1499
11	G/Gmax	0.9942	0.9890	0.9527	0.9129	0.6890	0.5262	0.1758	0.0938
11	λd	0.0143	0.0167	0.0285	0.0383	0.0781	0.1011	0.1434	0.1525
10	G/Gmax	0.9944	0.9891	0.9495	0.9051	0.6641	0.5010	0.1726	0.0959
12	λd	0.0140	0.0168	0.0303	0.0412	0.0832	0.1053	0.1435	0.1517
12	G/Gmax	0.9932	0.9867	0.9389	0.8866	0.6216	0.4575	0.1531	0.0854
15	λd	0.0154	0.0186	0.0341	0.0464	0.0912	0.1132	0.1486	0.1559
14	G/Gmax	0.9941	0.9884	0.9455	0.8976	0.6452	0.4815	0.1645	0.0919
14	λd	0.0145	0.0176	0.0324	0.0442	0.0876	0.1094	0.1457	0.1533
15	G/Gmax	0.9946	0.9896	0.9518	0.9094	0.6748	0.5120	0.1762	0.0972
15	λd	0.0138	0.0163	0.0288	0.0391	0.0801	0.1026	0.1425	0.1511
16	G/Gmax	0.9953	0.9907	0.9561	0.9165	0.6904	0.5288	0.1854	0.1027
10	λd	0.0131	0.0158	0.0287	0.0391	0.0796	0.1015	0.1405	0.1489
17	G/Gmax	0.9939	0.9880	0.9440	0.8951	0.6400	0.4766	0.1630	0.0913
17	λd	0.0146	0.0177	0.0327	0.0447	0.0883	0.1101	0.1460	0.1535
18	G/Gmax	0.9938	0.9874	0.9370	0.8808	0.6062	0.4453	0.1556	0.0898
10	λd	0.0148	0.0179	0.0337	0.0464	0.0918	0.1131	0.1469	0.1541
19	G/Gmax	0.9934	0.9866	0.9341	0.8759	0.5962	0.4351	0.1498	0.0860
	λd	0.0153	0.0186	0.0354	0.0487	0.0947	0.1158	0.1487	0.1555
20	G/Gmax	0.9953	0.9910	0.9589	0.9225	0.7098	0.5497	0.1912	0.1037
	λd	0.0131	0.0155	0.0272	0.0367	0.0754	0.0977	0.1395	0.1486
21	G/Gmax	0.9962	0.9923	0.9603	0.9221	0.6989	0.5386	0.1956	0.1108
	λd	0.0121	0.0144	0.0264	0.0363	0.0761	0.0979	0.1370	0.1457
22	G/Gmax	0.9965	0.9926	0.9597	0.9198	0.6899	0.5304	0.1978	0.1149
	λd	0.0115	0.0139	0.0260	0.0364	0.0766	0.0980	0.1356	0.1440
23	G/Gmax	0.9966	0.9928	0.9618	0.9242	0.7018	0.5418	0.1990	0.1136
-	λd	0.0117	0.0140	0.0257	0.0357	0.0753	0.0970	0.1359	0.1446
24	G/Gmax	0.9905	0.9789	0.8950	0.8084	0.4556	0.2948	0.0771	0.0401
	λd	0.0380	0.0460	0.0710	0.0840	0.1120	0.1200	0.1300	0.1310
25	G/Gmax	0.9960	0.9919	0.9591	0.9205	0.6961	0.5355	0.1930	0.1089
	٨d	0.0123	0.0147	0.0266	0.0365	0.0764	0.0983	0.1377	0.1465
26	G/Gmax	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	λd	0.0040	0.0080	0.0100	0.0510	0.0210	0.0300	0.0360	0.0460

6.4 目标区场地土层地震反应分析结果

根据工程结构抗震设计的要求,对目标区范围进行场地地震反应计算时,先按照各钻孔实际基岩加速度峰值对50年超越概率为63%、10%、2%的基岩基准控制点人工时程幅值分别进行缩放调整,得出各钻孔相应超越概率的基岩地震动加速度时程(各5个样本),再按实际幅值的¹/2确定各钻孔一维土层反应分析模型的计算基底入射波输入量。

在50年超越概率为63%、10%、2%的条件下,场地各钻孔对应的各个概率水准的水平向地震动峰值加速度的计算值见表6.4-1至表6.4-3。表6.4-4至表6.4-6给出了各钻孔对应概率水准下水平向地震动归准反应谱,表中各钻孔地表水平向地震动峰值加速度的取值结合了实际标定情况,在计算结果的基础上适当提高。图6.4-1至图6.4-3给出了各钻孔水平向地震动加速度反应谱曲线(5%阻尼比)。峰值加速度和特征周期分布图见图6.4-4至图6.4-9。

钻孔编号	峰值加速度计算结果(gal)							
	相位 1	相位 2	相位 3	相位 4	相位 5	平均值		
ZK1	29.0	34.2	34.8	29.3	34.3	32		
ZK2	31.3	36.6	32.4	31.8	35.1	33		
ZK3	34.5	33.9	32.1	28.5	31.8	32		
ZK4	33.3	34.3	31.7	32.3	34.4	33		
ZK5	35.8	35.7	33.9	31.5	32.5	34		
ZK6	31.7	35.9	34.7	30.0	35.8	34		
ZK7	37.0	36.6	33.9	32.8	33.2	35		
ZK8	32.7	33.3	33.3	33.1	32.6	33		
ZK9	30.1	33.2	30.8	29.5	31.3	31		
ZK11	31.9	35.2	35.2	31.9	33.9	34		
ZK12	35.8	36.4	32.6	32.8	33.5	34		
ZK13	32.2	33.7	31.8	29.9	33.3	32		

表 6.4-1 50 年超越概率 63%条件下地表水平向地震动峰值加速度

表 6.4-2 50 年超越概率 10%条件下地表水平向地震动峰值加速度

钻孔编号	峰值加速度计算结果(gal)							
	相位 1	相位 2	相位 3	相位 4	相位 5	平均值		
ZK1	83.9	72.7	79.7	75.0	76.4	78		
ZK2	78.6	75.8	69.4	83.6	74.2	76		
ZK3	80.7	70.4	67.2	81.9	74.9	75		
ZK4	77.7	66.8	75.3	83.0	80.4	77		
ZK5	86.7	73.6	73.2	87.0	78.2	80		
ZK6	78.9	70.9	77.7	79.0	78.7	77		
ZK7	85.8	72.9	72.4	90.2	77.2	80		
ZK8	74.5	71.8	77.3	81.8	75.2	76		
ZK9	73.0	71.5	64.6	78.7	68.8	71		
ZK11	80.1	70.8	79.4	82.4	76.1	78		
ZK12	83.6	73.0	73.8	88.2	81.5	80		
ZK13	70.0	61.3	70.2	74.8	72.2	70		
-------------------------------------	-------	-------	-------	-------	-------	-----	--	--
表 6.4-3 50 年超越概率 2%条件下地表水平向地震动峰值加速度								
杜 耳 疟 早		峰伯	直加速度i	计算结果(gal)			
11115册 与	相位 1	相位 2	相位3	相位 4	相位 5	平均值		
ZK1	145.3	128.3	143.1	141.7	146.3	141		
ZK2	156.7	132.9	146.6	150.1	144.8	146		
ZK3	154.1	138.5	141.1	143.4	144.1	144		
ZK4	157.3	132.6	141.3	143.4	142.6	143		
ZK5	157.3	138.5	139.4	148.1	149.0	146		
ZK6	149.6	126.6	136.2	143.4	137.1	139		
ZK7	162.9	142.1	136.2	149.3	147.9	148		
ZK8	154.8	126.5	139.5	136.1	142.3	140		
ZK9	148.6	117.3	135.0	138.4	135.9	135		

表 6.4-4 50 年超越概率 63%各钻孔地表水平向 地震动峰值加速度及反应谱(5%阻尼比)

143.8

136.4

132.4

141.5

147.0

127.6

148.4

145.3

128.2

144

145

132

ZK11

ZK12

ZK13

156.9

162.5

146.7

128.5

135.2

125.9

钻孔编号	A _{max} (gal)	$\beta_{\rm m}$	<i>T</i> ₁ (s)	$T_{\rm g}({\rm s})$	γ	$\alpha_{\rm max}$
ZK1	32	2.5	0.1	0.40	0.9	0.080
ZK2	33	2.5	0.1	0.40	0.9	0.083
ZK3	32	2.5	0.1	0.40	0.9	0.080
ZK4	33	2.5	0.1	0.40	0.9	0.083
ZK5	34	2.5	0.1	0.40	0.9	0.085
ZK6	34	2.5	0.1	0.40	0.9	0.085
ZK7	35	2.5	0.1	0.40	0.9	0.088
ZK8	33	2.5	0.1	0.40	0.9	0.083
ZK9	31	2.5	0.1	0.40	0.9	0.078
ZK10	34	2.5	0.1	0.40	0.9	0.085
ZK11	34	2.5	0.1	0.40	0.9	0.085
ZK12	32	2.5	0.1	0.40	0.9	0.080
ZK13	34	2.5	0.1	0.40	0.9	0.085

表 6.4-5 50 年超越概率 10%各钻孔地表水平向 地震动峰值加速度及反应谱(5%阻尼比)

				् <u>यम</u> ,0,0,0,		
钻孔编号	A _{max} (gal)	$\beta_{\rm m}$	$T_1(\mathbf{s})$	$T_{g}(s)$	γ	$\alpha_{\rm max}$
ZK1	85	2.5	0.1	0.45	0.9	0.213
ZK2	85	2.5	0.1	0.45	0.9	0.213
ZK3	80	2.5	0.1	0.45	0.9	0.200
ZK4	80	2.5	0.1	0.45	0.9	0.200
ZK5	85	2.5	0.1	0.45	0.9	0.213
ZK6	85	2.5	0.1	0.45	0.9	0.213
ZK7	85	2.5	0.1	0.45	0.9	0.213
ZK8	85	2.5	0.1	0.45	0.9	0.213
ZK9	80	2.5	0.1	0.45	0.9	0.200
ZK10	85	2.5	0.1	0.45	0.9	0.213
ZK11	85	2.5	0.1	0.45	0.9	0.213

结人立	6	4-	đ	1 6	而	-1	£	¥1.	-2	<u>منہ</u>
吊丌孠	Ę	杯	Ľ	扡	辰	쬐	刅	釵	娴	Æ

ZK12	80	2.5	0.1	0.45	0.9	0.200
ZK13	85	2.5	0.1	0.45	0.9	0.213

表 6.4-6 50 年超越概率 2%各钻孔地表水平向 地震动峰值加速度及反应谱(5%阻尼比)

钻孔编号	A _{max} (gal)	$\beta_{\rm m}$	$T_1(\mathbf{s})$	$T_{g}(s)$	γ	$\alpha_{\rm max}$
ZK1	150	2.5	0.1	0.50	0.9	0.375
ZK2	160	2.5	0.1	0.50	0.9	0.400
ZK3	150	2.5	0.1	0.50	0.9	0.375
ZK4	160	2.5	0.1	0.50	0.9	0.400
ZK5	160	2.5	0.1	0.50	0.9	0.400
ZK6	150	2.5	0.1	0.50	0.9	0.375
ZK7	160	2.5	0.1	0.50	0.9	0.400
ZK8	150	2.5	0.1	0.50	0.9	0.375
ZK9	150	2.5	0.1	0.50	0.9	0.375
ZK10	150	2.5	0.1	0.50	0.9	0.375
ZK11	160	2.5	0.1	0.50	0.9	0.400
ZK12	150	2.5	0.1	0.50	0.9	0.375
ZK13	160	2.5	0.1	0.50	0.9	0.400

图 6.4-2 各钻孔地表水平向地震动加速度反应谱及规准反应谱(50 年超越概率 10%)

图 6.4-3 各钻孔地表水平向地震动加速度反应谱及规准反应谱(50 年超越概率 2%)

图 6.4-4 地表水平向地震动峰值加速度分布图(50 年超越概率 63%)单位: gal

图 6.4-6 地表水平向地震动峰值加速度分布图(50 年超越概率 2%)单位: gal

图 6.4-7 地表水平向地震动加速度反应谱特征周期分布图(50 年超越概率 63%)单位: s

图 6.4-8 地表水平向地震动加速度反应谱特征周期分布图(50 年超越概率 10%)单位: s

图 6.4-9 地表水平向地震动加速度反应谱特征周期分布图(50 年超越概率 2%)单位: s

6.5 目标区地震动参数的确定

根据目标区钻孔土层地震反应分析得到的场地地表地震动反应谱分 析结果,确定目标区范围内的场地设计地震动反应谱特征参数。

6.5.1 设计地震动反应谱形式

根据《工程场地地震安全性评价》(GB 17741-2005),目标区场地设计 地震动加速度反应谱取为:

$$S_a(T) = A_{\max}\beta(T) \tag{6.5-1}$$

$$\beta(\mathbf{T}) = \begin{cases} 1+10 \ (\beta_{\max} - I) \ T & 0 \le T \le T_{I} \\ \beta_{\max} & T_{I} < T \le T_{g} \\ (T_{g} / T)^{\gamma} \beta_{\max} & T_{g} < T \le 6.0 \end{cases}$$
(6.5-2)

其中: A_{max}为地震动峰值加速度, β(T)为设计地震动加速度放大系数 反应谱, T为反应谱周期, T₁为反应谱平台起点周期,通常取0.10s, Tg为 反应谱特征周期y为衰减指数。

6.5.2 设计地震动参数分区

采用上述公式,结合目标区范围内的场地的钻孔地表 50 年超越概率 63%、10%、2%(阻尼比 5%)的计算地震动加速度反应谱结果,得到相应 的拟合曲线,如图 6.4-1~图 6.4-3 各图中的粗实线所示。进行地震动参数 分区时主要有以下几方面的考虑:

(1)力求各地震动参数分区之间的峰值和反应谱形态尽量具有幅度的 差异,即给出的分区相当于包含峰值和反应谱形态差异的综合分区;

(2)尽量使分区不至于太凌乱而导致使用不便;

(3)在允许的情况下尽可能按河流走向等地理元素勾画分区边界,便于 应用;

(4)分区时重点考虑地表50年超越概率10%的峰值和反应谱结果,结合 实际标定情况及《中国地震动参数区划图》(GB18306-2015)中的相关要 求确定分区参数。50年超越概率63%和2%的分区与50年超越概率10%分区 范围相同,也分别取其范围内的各个钻孔的平均值的近似值作为区划结果, 但不得低于《中国地震动参数区划图》(GB18306-2015)中对各分区的最 低值。

本次基于13个计算控制点的反应谱形态和地表加速度峰值,并考虑目标区场地的覆盖层厚度及工程地质分区情况,将目标区分为1个设计地震动分区(图6.5-1)。结合《中国地震动参数区划图》(GB18306-2015)中的相关要求,最终确定的场地范围内50年超越概率63%、10%、2%地表水平向峰值加速度和反应谱参数值如表6.5-1所示。

(c) 50 年 2%

图 6.5-2 目标区不同超越概率地表水平地震动反应谱及设计地震动反应谱曲线

超越概率	A _{max} (Gal)	$\beta_{ m m}$	T_1 (sec)	$T_{\rm g}$ (sec)	γ	$\alpha_{ m max}$
50年63%	35	2.5	0.1	0.55	0.9	0.088
50年10%	88	2.5	0.1	0.55	0.9	0.220
50年2%	160	2.5	0.1	0.60	0.9	0.400

表 6.5-1	目标区各分区地表水平向峰值加速度和反应谱参数值(5%阻尼比)
---------	--------------------------------

6.5.3 竖向地震动

针对项目所处的区域和近场地震构造和地震活动背景,建议竖向加速 度峰值取水平向加速度峰值的2/3~1,竖向地震加速度反应谱与水平向反应 谱采用相同的形状。

6.6 目标区设计加速度时程

根据场地设计地震动参数结果与地震动时程合成过程中地震动能量 匹配的原则,参考地震动持时参数统计经验关系所得的地震动持时参数, 在地震动时程合成过程中,综合考虑地震动反应谱与强度包线之间的匹配 情况,调整地震动持时参数值,最终得到对应50年超越概率为63%、10%、 2%的地震动持时参数见表6.6-1。

根据以上合成原理及有关参数,对目标谱插值使周期控制点取55个,分别对50年超越概率63%、10%、2%的目标谱取不同随机初始相位,各合成3条地表地震动加速度时程曲线,时程离散步长0.02s,离散点数2048个。

采用人工合成加速度转化为频率域中的拟合谱,拟合谱与输入计算的

目标谱比较,相对误差小于5%。图6.6-1为目标区各分区范围内50年超越概率63%、10%、2%相应时程及对应的反应谱在控制点上对目标谱的拟合情况。

 $T_2 \ (s)$ 概率水平 $T_1 \ (s)$ c 50年63% 3.0 12.5 0.17 50年10% 3.0 15.0 0.15 50年2% 2.5 19.5 0.14

表 6.6-1 地震动持时参数表

图 6.6-1 地 表 地 震 动 动 时 程 及 地 表 设 计 反 应 谱 对 目 标 谱 拟 合 情 况

第七章 目标区地震地质灾害评价

地质灾害是强烈地震动之外造成地震严重灾害损失的第二个重要原因。研 究地震地质灾害对于判别地震烈度、判断震中位置等具有重要意义。同时,历 次震害表明,对不良地质条件地区,忽略其地震地质灾害的估价,将造成不可 低估的损失。

场地地震地质灾害是指由于地震动或断层错动引起的可能影响场地上工程性能的地面破裂(活动断层断错)、场地失效(液化、震陷)、斜坡失稳(崩塌、滑坡)以及海啸、湖涌等灾害。本章节在研究前面各章节资料基础上,综合分析评判该目标区可能遭遇的地震地质灾害,主要包括四方面的内容:①砂土液化评价;②软土震陷评价;③活动断层断错评价;④滑坡、崩塌评价。

7.1 场地砂土液化评价

地震引起可液化地层液化并导致场地地基失效,往往造成建筑物下陷(沉)、 浮起、倾斜、开裂现象或造成建筑物难以修复的破坏,这已被多次国内外地震 震害所证实。砂土液化是强地震动产生的循环剪应力对饱和砂土的结构破坏过 程,美国土木工程师学会将液化定义为"将任何物质转变为液化状态的作用过 程,在无粘性土中,这种转变是因孔隙水压力增加和有效应力减少所导致的自 固态到液态的变化。"据震害调查,许多学者认为影响液化的因素可归纳为如下 几条:地质年代、土层颗粒年代、地下水埋深、表层非液化土层覆盖厚度、可 液化地层厚度、地震烈度(地震动作用)。

7.1.1 砂土液化评价方法

工程场地地震液化评价方法主要依据《建筑抗震设计规范》(GB50011-2010) 分两步进行即先初判,后详判,初判是根据震害经验统计阀值和影响液化的地 质因数分析判别。凡经初判为不液化和不考虑液化影响的场地,则可以不进行 液化可能性的详判。详判是在初判有可能液化条件下,以试验和计算为主的判 别。

(1)液化初判

根据中华人民共和国国颁标准《建筑抗震设计规范》(GB50011-2010)等条 文规定,对饱和砂土或粉土可根据下列情况进行初步判定。

①饱和砂土和饱和粉土(不含黄土)的液化判别和地基处理,6度时,一般

情况下可不进行判别和处理,但对液化沉陷敏感的乙类建筑可按WI度的要求进行判别和处理,7~9度时,乙类建筑可按本地区抗震设防烈度的要求进行判别和处理。

②地面下存在饱和砂土和饱和粉土时,除 6 度外,应进行液化判别;存在 液化土层的地基,应根据建筑的抗震设防类别、地基的液化等级,结合具体情 况采取相应的措施。

注:本条饱和土液化判别要求不含黄土、粉质黏土。

③饱和的砂土或粉土(不含黄土),当符合下列条件之一时,可初步判别为 不液化或可不考虑液化影响:

A 地质年代为第四纪晚更新世(Q₃)及其以前时,7、8度时可判为不液化。

B 粉土的黏粒(粒径小于 0.005mm 的颗粒)含量百分率,7度、8度和 9 度分别不小于 10、13 和 16 时,可判为不液化土。

注:用于液化判别的黏粒含量系采用六偏磷酸钠作分散剂测定,采用其他方法时应 按有关规定换算。

C 浅埋天然地基的建筑,当上覆非液化土层厚度和地下水位深度符合下列 条件之一时,可不考虑液化影响:

$$d_u > d_0 + d_b - 2$$
 (7.1-1)

$$d_{w} > d_{0} + d_{b} - 3$$
 (7.1-2)

$$d_u + d_w > 1.5 d_0 + 2 d_b - 4.5$$
 (7.1-3)

式中: d_w—地下水位深度(m), 宜按设计基准期内年平均最高水位采用, 也可按近期内年最高水位采用;

- d_u—上覆盖非液化土层厚度(m),计算时宜将淤泥和淤泥质土层扣除;
- d_b—基础埋置深度(m),不超过2m时应采用2m;

d₀—液化土特征深度(m),可按表 7.1-1采用。

饱和土类别	7度	8度	9度
粉土	6	7	8
砂土	7	8	9

表 7.1-1 液化土特征深度(m)

注: 当区域的地下水位处于变动状态时,应按不利的情况考虑。

如若地震工程场地下覆粉质粘土、粉砂、粉细砂、细砂在所计算的地震烈度作用下,具有液化的可能性,还需对该岩土层进行进一步的液化详判。

(2)液化详判

①标准贯入锤击法

当饱和砂土、粉土的初步判别认为需进一步进行液化判别时,应采用标准

贯入试验判别法判别地面下 30m 范围内土的液化。当饱和土标准贯人锤击数(未 经杆长修正)小于或等于液化判别标准贯入锤击数临界值时,应判为液化土。

根据《建筑抗震设计规范》(GB50011-2010),在地面下 10m 深度范围内, 液化判别标准贯入锤击数临界值 N_c可按下式计算:

$$N_{cr} = N_0 \beta \left[\ln(0.6d_s + 1.5) - 0.1d_w \right] \sqrt{\frac{3}{\rho_c}}$$
(7.1-4)

式中: N_{cr}—液化判别标准贯入锤击数临界值;

N₀一液化判别标准贯入锤击数基准值,可按表 7.1-2 采用;

d。—饱和土标准贯入点深度(m);

 d_w —地下水位(m);

 ρ_c — 黏粒含量百分率,当小于3或为砂土时,应采用3;

β—调整系数,设计地震第一组取 0.80,第二组取 0.95,第三组取 1.05。

表 7.1-2 液化判别标准贯入锤击数基准值

设计基本地震加速度(g)	0.10	0.15	0.20	0.30	0.40
液化判别标准贯人锤击数基准值	7	10	12	16	19

根据《区域性地震安全性评价工作大纲(试行)》(中震防函〔2019〕21号) 要求,在地面下 10-30m 深度范围内,液化判别标准贯入锤击数临界值 N_{cr}按下 式计算:

$$N_{cr} = \gamma \beta_0 \frac{58a_{\max}}{a_{\max} + 0.4} \times (1 - 0.02d_w) \times (0.27 + \frac{d_s}{d_s + 6.2}) \times \sqrt{3/\rho_c}$$
(7.1-5)

式中: N_a--液化判别标准贯入锤击数临界值;

 γ —工作等级系数,取 1.0;

 a_{max} —场地地震动峰值加速度 (gn);

 d_{s} —饱和土标准贯入点深度(m);

 d_w —地下水位(m);

 ρ_c —黏粒含量百分率,当小于3或为砂土时,应采用3;

β₀—调整系数,设计地震第一组取 0.80,第二组取 0.95,第三组取 1.05。

②液化指数

对存在液化砂土层、粉土层的地基,应探明各液化土层的深度和厚度,按 下式计算每个钻孔的液化指数,并按表 7.1-3 综合划分地基的液化等级:

$$I_{lE} = \sum_{i=1}^{n} \left[1 - \frac{N_i}{N_{cri}} \right] d_i W_i$$
(7.1-6)

式中: I_{F} —液化指数;

n—在判别深度范围内每一个钻孔标准贯入试验点的总数;

- N_i、N_{cri}—分别为i点标准贯人锤击数的实测值和临界值,当实测值大于临界值时应取临界值;当只需要判别 15m 范围以内的液化时,15m 以下的实测值可按临界值采用;
- d_i—i点所代表的土层厚度(m),可采用与该标准贯入试验点相邻的上、 下两标准贯人试验点深度差的一半,但上界不高于地下水位深度,下界不深于液化深度;
- W_i—i土层单位土层厚度的层位影响权函数值(单位为 m⁻¹)。当该层中点深度不大于 5m 时应采用 10,等于 20m 时应采用零值,5~20m 时应按线性内插法取值。

表 7.1-3 液化等级与液化指数的对应关系

液化等级	轻微	中等	严重
液化指数 I _{IE}	$0 < I_{lE} \leq 6$	$6 < I_{lE} \le 18$	$I_{lE} > 18$

7.1.2 液化判别和评价结果

根据《天长市化工集中区区域性地震安全性评价钻探勘察报告》,目标区内 30m 深度范围内主要分布有人工填土、粉质粘土、粉细砂、中粗砂几类土层,从上到 下具体可划分为4层。

①填土层(Q4): 全场地分布; 该岩土层钻孔揭露的一般厚度 0.50~3.10 米, 平均厚度 0.97 米; 钻孔揭露的层顶面标高 13.04 米~14.74 米,平均标高 13.99 米。灰色,松散,湿。含植物根。局部表层含建筑垃圾及生活垃圾。

②粉质粘土层(Q₃): 全场地分布; 该岩土层钻孔揭露的一般厚度 17.10~39.70米,平均厚度 26.22米; 钻孔揭露的层顶面埋深 0.50米~3.10米,平均埋 深 0.97米; 钻孔揭露的层顶面标高 10.70米~14.24米,平均标高 13.02米。灰黄、褐黄色,可塑~硬塑,湿,干强度中等,中等韧性,摇振反应无,稍有光泽。

③-1 粉细砂层(Q₃):局部分布,仅在第 ZK1,ZK2,ZK3,ZK4,ZK5,ZK8, ZK10,ZK11,ZK12 号孔一带可见;该岩土层钻孔揭露的一般厚度 5.00~26.10 米,平均厚度 11.31 米;钻孔揭露的层顶面埋深 17.60 米~32.00 米,平均埋深 26.47 米;钻孔揭露的层顶面标高-17.76 米~-3.09 米,平均标高-12.59 米。黄褐 色,中密~密实,饱和,干强度低,低韧性,摇振反应迅速,无光泽。颗粒均 匀,含石英云母。

③-2 中粗砂层(Q₃):局部分布,仅在第 ZK6,ZK7,ZK9,ZK13 号孔一带可见;该岩土层钻孔揭露的一般厚度 1.80~24.50 米,平均厚度 12.40 米;钻孔揭露的层顶面埋深 20.00 米~40.20 米,平均埋深 28.80 米;钻孔揭露的层顶面标高-25.63 米~-5.26 米,平均标高-14.54 米。黄褐色,中密~密实,饱和,干强度低,低韧性,摇振反应迅速,无光泽。分选性较差,含石英云母。

依据《中国地震动参数区划图》(GB18306-2015),本评价区域抗震设防烈 度为6度,设计基本地震加速度值为0.05g,抗震设防分组第二组。现场钻孔资 料及区域地质资料显示,场地内饱和的砂层地质时代为第四纪晚更新世,处于 中密-密实状态。根据7.1.1节液化初判原则"饱和砂土和饱和粉土(不含黄土) 的液化判别和地基处理,6度时,一般情况下可不进行判别和处理"及"饱和的 砂土或粉土(不含黄土)地质年代为第四纪晚更新世(Q₃)及其以前时,7、8 度时可判为不液化",判定场地可不考虑地震液化的影响。

综合分析认为,目标区可不考虑地震液化的影响。

7.2 软土震陷评价

震陷是指地震作用下软弱土层塑性区的扩大或强度的降低而使建(构)筑 物或地面产生的附加下沉,它可以引起建筑物地基的附加不均匀沉陷,导致其 上构筑物的开裂、倾斜或倒塌。因形成的机制不同,可分为构造震陷、液化震 陷、软土震陷、黄土震陷及其他震陷。

软土主要是由淤泥、淤泥质土、泥炭质土、有机质土或其他高压缩性土组成。软土的工程性质特点是高压缩性、低强度、高灵敏度和低透水性。软土层 具有良好的层理,在互层中伴随有少数较密实的颗粒较粗的粉土或砂层。强烈 地震时软土发生震陷,不仅被科学实验和理论研究证实,而且在宏观震害调查 中,也证明它的存在。

根据《软土地区工程地质勘察规范》(JGJ83-2011)的规定,软土的判别应符合下列要求:(1)外观以灰色为主的细粒土;(2)天然含水量大于或等于液限;(3)天然孔隙比大于或等于 1.0,主要包括淤泥、淤泥质土、泥炭、泥炭质土等。

根据《岩土工程勘察规范》(GB50021-2001):"当地承载力标准值 fk或平均 剪切波速(Vsm)大于表 7.2-1 所列数值时,可不考虑震陷影响,否则应在专门 分析的基础上进行综合评价后采取有效的抗震措施"。

	小积为你件旧		人之臣
抗震设防烈度	VII	VIII	IX

表 7.2-1 临界承载力标准值与平均剪切波速值

第七章 目标区地震地质灾害评价

承载力标准值 fk(kPa)	>80	>130	>160
平均剪切波速 V _{sm} (m/s)	>90	>140	>200

根据 GB18306-2015《中国地震动参数区划图》,目标区为 6 度设防区域。 依据《天长市化工集中区区域性地震安全性评价钻探勘察报告》,目标区地下 30m 深度范围内不存在软土。

综合分析可知,目标区地下无软土层存在,可不考虑存在软土震陷的影响。

7.3 活动断层断错评价

活断层是指目前正在活动着的断层,或曾有过活动而不久的将来可能会重新活动的断层。目前学者普遍认为活动断层是晚更新世(12万年)以来活动过并且在将来可能继续活动的断层。其中,全新世活断层(1万年以来)是第一级活断层,晚更新世活断层(1万年之前至12万年内)是第二级活断层,不属于第一、二级活断层但是其存在并未受到明确认定的断层是第三级断层。

活断层与地震地表破裂关系密切。地震地表破裂是指发震断层引起的地面 错动,其运动方向、规模和性质等均与活动断裂息息相关。讨论地震地表破裂 的实质是研究断裂与地震及其强度的关系,当地壳应变能沿断裂突然释放导致 地震时,在一定的条件下可以引起地面变形和破裂。地震形变带是发生在地表 的另一种地面破坏类型,它是指由强震引起的沿发震构造分布并反映发震构造 特点,且显示一定深度和一定规模的地表变形带或者破坏带。

活动性断裂可以通过地质现象、地球物理勘探等方法进行探查。根据GB50011-2010《建筑抗震设计规范》,场地内存在活动断裂时,应对断裂的工程影响进行评价,并符合下列要求:

1. 对符合下列规定之一的情况,可忽略发震断裂错动对地面建筑的影响:

1) 抗震设防烈度小于 8 度;

2) 非全新世活动断裂;

3) 抗震设防烈度为 8 度和 9 度时, 隐伏断裂的土层覆盖层厚度分别大于 60m 和 90m。

2. 对不符合本条 1 款规定的情况,应避开主断裂带。在避让距离的范围内确有需要建造分散的、低于三层的丙、丁类建筑时,应提高一度取抗震措施,并提高基础和上部结构的整体性,且不得跨越断层线。

根据 GB18306-2015《中国地震动参数区划图》和本报告第 4 章研究成果, 目标区为 6 度设防区域场地,目标区内无活动断裂通过。据此判断,可忽略活 动断层对目标区内地面建筑的影响。

7.4 滑坡、崩塌评价

拟建工程场地存在边坡或有边坡失稳可能时,应进行场地边坡体的地震稳 定性评价。边坡失稳是一种对工程安全有严重威胁的不良地质作用和地质灾害, 可能造成重大人身伤亡和经济损失,特别是在地震荷载作用下更会产生严重后 果。坡体地震反应是指地震所引起的坡体反应,它包括地震动在坡体中引起的 加速度、速度、位移和内力等反应。目前坡体的地震稳定性分析方法主要有: 拟静力法、滑块分析法、概率分析法、数值分析方法、试验法。通过现场的地 质地貌调查,查明场地周边坡体情况,对于存在坡体问题的场地需做专门的坡 体稳地震稳定性分析。

滑坡、崩塌一般发生在地形坡度较大、岩体裂隙发育、连通性好的岩土体上。目标区处于沿江丘陵平原地貌区,微地貌为河谷平原,地面标高 5~20m, 相对高差小于 10m,由第四系全新统冲积物组成,主要分布于中部和北部。。目标区内主要为缓坡地,地形较为平坦,无明显起伏。因此,天然状态下存在滑坡、崩塌的可能性较小。

7.5 结论

目标区位于天长市铜城镇,省道 204 两侧,总面积约 2.01km²。据本次勘察 资料,目标区地下存在饱和的砂层,平均埋深在 26.47m 以下,且均为中密-密实 状态,地质时代亦为第四纪晚更新世。根据液化初判原则判断,目标区可不考 虑地震液化的影响。目标区无软土层存在,可不考虑软土震陷的影响。目标区 地形较为平坦,不存在滑坡、崩塌及活动断层断错地表等地震地质灾害。图 7.5-1 为目标区地震地质灾害分布图。

本次地震地质灾害评价结果只是初步判别和评价的结果,建议在后续具体 工程勘察中做详细勘察工作,并开展更为详细的地震地质灾害评价。

第七章 目标区地震地质灾害评价

第八章 主要结论和建议

8.1 主要结论

本项目完成了天长市化工集中区区域性地震安全性评价工作。项目的 主要工作内容为:开展区域及近场地震地质调查和特征分析、区域和近场 地震活动性评价、场地工程地质条件勘测、地震危险性分析、土层地震反 应分析、工程场地地震动参数区划、地震地质灾害评价等工作,根据以上 成果,得出以下主要结论:

1、区域涉及郯庐地震带、长江下游~南黄海地震带,目标区位于长 江下游~南黄海地震带内。区域范围内共记载M≥4.7级地震55次,其中M ≥6级地震7次,5≤M<6级地震30次,4.7≤M<5级地震18次,其中震级最 大为M6¹/2级地震。区域历史地震活动空间分布不均匀,往往与活动构造密 切相关,工作区中西部为北北东向地震活动带,大体上与郯庐断裂带走向 一致,工作区东部以北东向及北西向地震条带活动为主,其中黄海、茅山 东侧断裂带及其附近地区及昆山附近表现为中强震活动丛集性。区域范围 内地震震源深度95%以上都在25km以内,绝大部分属于地壳中上层的浅源 构造地震。工作区遭受最大影响烈度为Ⅲ度,为1668年7月山东郯城~莒 县M8¹/2级地震引起的。

2、区域地跨3个一级大地构造单元,西部为华北断块区和秦岭~大别 山断褶带,东南部属于下扬子断块区,目标区范围位于下扬子断块区之内, 为古生代开始形成的拗陷带,经受印支、燕山期构造作用,形成地台盖层 褶皱带。该区由晚白垩纪到古近纪形成的一系列隆起和盆地构成,新构造 期以来仍有一定的差异活动,但活动强度较弱。区域内断裂构造发育,以 NE向和NW向断裂为主,其次为近EW向断裂。其中NE向断裂规模较大、 活动历史较长,NW向断裂具有一定新生性,控制晚新生代盆地。大部分 断裂的最新活动时代在早、中更新世或前第四纪,晚更新世以来活动断裂 有3条,茅山东侧断裂,桑涧子~广寒桥断裂淮河以北段及池河~西山驿断 裂女山湖以北段。

3、近场区展布3条规模较大的断裂,包括杨村~汊涧断裂、滁河断裂 和无锡-宿迁断裂。杨村~汊涧断裂为走向NE,倾向N或NW的正断层,第四 纪以来不活动;滁河断裂为走向NE,倾向N或NW的正断层,第四纪早期有 活动;无锡-宿迁断裂走向NW,倾向NE,钻孔资料解释的最新活动时代为 中更新世。 4、自1970年安徽省测震台网建立以来,近场区共记录到M≥1.0级地震 26次,其中M1.0~1.9级地震10次,M2.0~2.9级地震14次,M≥3.0级地震2 次。最大地震为1491年9月发生在天长县的M5级地震,该次地震距离园区 的距离约22km,对场地的影响烈度约为V度。

5、在区域范围内共划分出38个潜在震源区,其中8.5级潜在震源区1 个,7.5级潜在震源区3个,7.0级潜在震源区3个,6.5级潜在震源区12个, 6.0级潜在震源区19个。本次工作区域范围内,郯庐地震带、长江下游~南 黄海地震带的背景性潜在震源区震级上限均为5.5级。对场地地震危险性影 响较大的潜源为天长(72)潜源、泗洪(51号)潜源及目标区所在背景源 (23号)等。

6、采用地震危险性分析的概率方法,选择并确定适合本地区的基岩 地震动衰减关系,对本场地进行地震危险性分析计算,经不确定性校正后, 得到目标区范围内13个控制性钻孔计算控制点年超越概率为50年63%、50 年10%、50年2%基岩地震动水平向峰值加速度值,见表8-1。

超越概率钻孔编号	50年63%	50年10%	50年2%
ZK1	20.9	61.9	107.9
ZK2	20.9	61.8	107.8
ZK3	20.9	61.8	107.8
ZK4	20.9	61.8	107.8
ZK5	20.8	61.8	107.8
ZK6	20.9	61.7	107.8
ZK7	20.8	61.8	107.8
ZK8	20.9	61.8	107.8
ZK9	20.8	61.8	107.8
ZK10	20.9	61.7	107.7
ZK11	20.9	61.7	107.7
ZK12	20.9	61.7	107.7
ZK13	20.9	61.7	107.7

表 8-1 基岩水平向峰值加速度计算结果(单位: gal)

7、结合各控制性钻孔土层等效剪切波速和覆盖层厚度结果,对各钻 孔的场地类别进行判定(表8-2),目标区工作范围场地土均为中软土,场 地类别为II~III类。

序号	钻孔编号	计算深度 (m)	覆盖层厚度 (m)	等效波速值 (m/s)	场地土类型	场地类 别
1	ZK1	20	54	223.15	中软土	III
2	ZK2	20	47	204.66	中软土	II
3	ZK3	20	46	234.03	中软土	II
4	ZK4	20	57	208.50	中软土	III

表 8-2 场地剪切波速测试及场地类别划分结果表

5	ZK5	20	49	212.77	中软土	II
6	ZK6	20	57	177.22	中软土	III
7	ZK7	20	49	205.52	中软土	II
8	ZK8	20	61	231.97	中软土	III
9	ZK9	20	59	233.97	中软土	III
10	ZK10	20	53	243.46	中软土	III
11	ZK11	20	51	214.35	中软土	III
12	ZK12	20	63	219.42	中软土	III
13	ZK13	20	57	201.57	中软土	III

天长市化工集中区区域性地震安全性评价报告

8、利用现场钻探、波速测试、场地土的静、动力学参数试验,目标 区共建立 13 个计算模型,经土层地震反应及地震动效应分析计算,结合 场地工程地质条件,目标区各计算点地表水平向地震动参数见表 8-3~表 8-5。

表 8-3 50 年超越概率 63% 各钻孔地表水平向地震动峰值加速度及反应谱(5% 阻尼比)

钻孔编号	A _{max} (gal)	$\beta_{\rm m}$	$T_1(\mathbf{s})$	$T_{\rm g}({\rm s})$	γ	$\alpha_{\rm max}$
ZK1	32	2.5	0.1	0.40	0.9	0.080
ZK2	33	2.5	0.1	0.40	0.9	0.083
ZK3	32	2.5	0.1	0.40	0.9	0.080
ZK4	33	2.5	0.1	0.40	0.9	0.083
ZK5	34	2.5	0.1	0.40	0.9	0.085
ZK6	34	2.5	0.1	0.40	0.9	0.085
ZK7	35	2.5	0.1	0.40	0.9	0.088
ZK8	33	2.5	0.1	0.40	0.9	0.083
ZK9	31	2.5	0.1	0.40	0.9	0.078
ZK10	34	2.5	0.1	0.40	0.9	0.085
ZK11	34	2.5	0.1	0.40	0.9	0.085
ZK12	32	2.5	0.1	0.40	0.9	0.080
ZK13	34	2.5	0.1	0.40	0.9	0.085

表 8-4 50 年超越概率 10% 各钻孔地表水平向地震动峰值加速度及反应谱(5% 阻尼比)

钻孔编号	A _{max} (gal)	$\beta_{\rm m}$	$T_1(\mathbf{s})$	$T_{\rm g}({\rm s})$	γ	$\alpha_{\rm max}$
ZK1	85	2.5	0.1	0.45	0.9	0.213
ZK2	85	2.5	0.1	0.45	0.9	0.213
ZK3	80	2.5	0.1	0.45	0.9	0.200
ZK4	80	2.5	0.1	0.45	0.9	0.200
ZK5	85	2.5	0.1	0.45	0.9	0.213
ZK6	85	2.5	0.1	0.45	0.9	0.213
ZK7	85	2.5	0.1	0.45	0.9	0.213
ZK8	85	2.5	0.1	0.45	0.9	0.213
ZK9	80	2.5	0.1	0.45	0.9	0.200
ZK10	85	2.5	0.1	0.45	0.9	0.213
ZK11	85	2.5	0.1	0.45	0.9	0.213
ZK12	80	2.5	0.1	0.45	0.9	0.200
ZK13	85	2.5	0.1	0.45	0.9	0.213

钻孔编号	A _{max} (gal)	$\beta_{\rm m}$	$T_1(\mathbf{s})$	$T_{\rm g}({\rm s})$	γ	$\alpha_{\rm max}$
ZK1	150	2.5	0.1	0.50	0.9	0.375
ZK2	160	2.5	0.1	0.50	0.9	0.400
ZK3	150	2.5	0.1	0.50	0.9	0.375
ZK4	160	2.5	0.1	0.50	0.9	0.400
ZK5	160	2.5	0.1	0.50	0.9	0.400
ZK6	150	2.5	0.1	0.50	0.9	0.375
ZK7	160	2.5	0.1	0.50	0.9	0.400
ZK8	150	2.5	0.1	0.50	0.9	0.375
ZK9	150	2.5	0.1	0.50	0.9	0.375
ZK10	150	2.5	0.1	0.50	0.9	0.375
ZK11	160	2.5	0.1	0.50	0.9	0.400
ZK12	150	2.5	0.1	0.50	0.9	0.375
ZK13	160	2.5	0.1	0.50	0.9	0.400

表 8-5 50 年超越概率 2%各钻孔地表水平向地震动峰值加速度及反应谱(5%阻尼比)

9、本次基于工作区13个计算控制点的反应谱形态和地表加速度峰值, 并考虑场地的工程地质分区情况,将目标区分为1个设计地震动分区(图 8-1),并结合《中国地震动参数区划图》(GB18306-2015)中的相关要 求,最终确定场地范围内50年超越概率63%、10%、2%地表水平向峰值加 速度和反应谱参数值如表8-6所示。

超越概率 T_1 (sec) $A_{\rm max}$ (Gal) $T_{\rm g}$ (sec) $\beta_{\rm m}$ γ $\alpha_{\rm max}$ 50年63% 35 2.5 0.1 0.55 0.9 0.088 0.1 50年10% 88 2.5 0.55 0.9 0.220 50年2% 160 2.5 0.1 0.60 0.9 0.400

表 8-6 场地分区地表水平向峰值加速度和反应谱参数值(5%阻尼比)

图 8-1 目标区地震动参数区划图

10、根据现有资料,暂未发现目标区存在地震地质灾害(图8-2)。本次地震地质灾害评价结果为初步判别和评价的结果,建议在后续具体工程勘察中做详细勘察工作,开展更为详细的地震地质灾害评价。 118°540″病 118°560″病 118°560″病

8.2 建议及成果使用说明

1、本项目在详细研究目标区所处的地震构造背景、地震活动环境, 特别是近场区范围内的地震活动环境、地质构造条件基础上,充分考虑局 部场地条件对地震动的影响,故工作成果可以直接应用于目标区内除中震 防发(2015)59号文所列的重大工程目录以外的、不同于一般工程的较为重 要的新建、扩建、改建建设工程选址、抗震设防要求确定、地震风险评价, 也适用于该目标区发展规划、国土利用规划及防震减灾对策制定等工作。

2、本区域性地震安全性评价成果提供了不同超越概率水准的场地地 震动参数,建设工程可根据工程的重要性及工程所允许承担的风险,选用 相应的地震动参数进行抗震设计。设计中如需要其它阻尼比的场地地震动 参数,可根据相关规范的规定进行调整计算;设计中下降指数γ可按相关 规范取值;设计中如需要竖向场地地震动参数,峰值加速度、地震影响系 数可根据相关规范规定按照水平向峰值加速度、地震影响系数进行折减取 值,其它参数不变。

3、目标区内设定场点工程场地地震动参数,可根据工程结构特征、场地工程地质条件和目标区地表地震动参数数据库、地震动时程数据库综合确定。根据场地工程地质勘察报告,给出场地类别。根据场地类别,依据GB18306-2015《中国地震动参数区划图》双参数调整要求,以50年超越概率63%、10%、2%地震作用地震动参数值,作为区划标准地震动参数。 对需要竖向地震动的建设工程,依据水平向地震动参数结果,采用竖向与水平向地震动比值确定场地竖向地震动,一般可取2/3。

4、本项工作成果综合反映了场地附近一定范围内地震地质、地震活动性及局部场地条件等因素对地震动的影响,具有较强的地区性,本工作成果不适用目标区范围以外的区域。中震防发(2015)59号文所列的重大工程应依法进行专门的场地地震安全性评价工作,在进一步的场地探测、勘测工作基础上,开展更详细、更有针对性场地地震动效应研究,确定场地地震动参数。

5、根据现行法规,目标区范围内的一般建设工程,可根据国家标准 GB18306-2015《中国地震动参数区划图》确定地震动参数。但GB 18306-2015《中国地震动参数区划图》比例尺为1:400万,给出的是大范 围内地震危险度的平均估计(平均值)。本项工作针对目标区做了更加深 入细致的工作,针对性更强、考虑的因素更多、精度要求更高,从而更能 反映目标区的地震环境、局部场地条件、场地地震动特征等,故目标区范 围内的一般建设工程,建议根据本报告主要结论确定地震动参数。

7、按照国家标准GB18306-2015《中国地震动参数区划图》中地震动

峰值加速度分区与地震基本烈度对照表,目标区范围内50年超越概率10% 对应的地震基本烈度为VI度。

8、场地地震地质灾害评价是在收集目标区范围内工程地质勘察资料 基础上,结合开展的目标区工程地质勘察和地震动参数研究成果,综合分 析场地具体的工程地质条件,认为在开挖的情况下可能存在滑坡、崩塌地 震地质灾害。对具体建设工程场地,在工程建设时应根据工程地质详勘工 作,开展进一步的地震地质灾害评价,并以此作为建设工程的基础设计依 据。

9、在天长市化工集中区区域性地震安全性评价等工作基础上,本项 目基于GIS平台构建了技术服务系统,为地震主管部门依法行政提供技术 支持,技术手册和用户手册另附。

参考文献

参考文献

- 中华人民共和国国家标准,2005,工程场地地震安全性评价技术规范
 a) (GB17741~2005),中国标准出版社。
- 中华人民共和国国家标准,2008,建筑工程抗震设防分类标准,中国 建筑工业出版社。
- 中华人民共和国国家标准,2010,建筑抗震设计规范,中国建筑工业 出版社。
- 中华人民共和国国家标准,2015,中国地震动参数区划图,中国标准 出版社。
- 中国地震局发布,2009,中华人民共和国地震行业标准《活动断层探测》(BT/T 15-2009)。
- 国家地震局,1979,中国地震烈度区划工作报告,地震出版社。
- 7. 国家地震局,1996,中国地震烈度区划图概论(1990年),地震出版社。
- 8. 国家地震局震害防御司,1995,中国历史强震目录(公元前23世-公元1911年),地震出版社。
- 国家地震局震害防御司,1999,中国近代地震目录,(公元 1912~1990, Ms≥4.7),中国科学技术出版社。
- 10. 汪素云、俞言祥, 2009, 震级转换关系及其对地震活动性参数的影响研究, 震灾防御技术, (2)。
- 11. 郭履灿、庞明虎, 1981, 面波震级和它的台基校正值, 地震学报, 3(3):
 312-320。
- 12. 王保太、姜长宁、徐戈,2001,江苏数字地震台网地震监测能力估算, 地震学刊,21 (1):14-18。
- 13. 梁尚鸿、李幼铭、束沛镒等, 1984, 利用区域地震台网 P、S 振幅比资料测定小震震源参数, 地球物理学报, 27 (3): 249-257。
- 14. 张文佑, 1983,《中国及邻区海陆大地构造图》,科学出版社。
- 15. 侯贵廷,钱祥麟,宋新民, 1998, 渤海湾盆地形成机制研究, 北京大学学报(自然科学版), 4:91-97.
- 16. 刘波,钱祥麟,王英华, 1999, 华北板块早古生代构造-沉积演化.地质科学,3:347-356.
- 17. 李三忠,周立宏,刘建忠等,2004,华北板块东部新生代断裂构造特征与 盆地成因,海洋地质与第四纪地质,3:57-66.
- 18. 葛宁洁,彭中华,李曙光.榴辉岩的成分分类.岩石学报,1992(01):87-89.
- 19. 黄立人, 1995, 中国大陆地壳垂直运动梯度图的编绘, 地壳形变与地

震, 15(2)。

- 20. 唐方头, 2003, 华北地块近期构造变形和强震活动研究(博士学位论文),中国地震局地质所。
- 21. 马杏垣等, 1989, 中国岩石圈动力学地图集, 中国地图出版社。
- 22. 江苏省地震工程研究院, 2016, 宿迁市活动断层探测与地震危险性评价报告。
- 23. 安徽省地震工程研究院,2017,合肥市活断层探测与地震危险性评价 报告。
- 24. 姚大全,汤有标,沈小七等,2012, 郯庐断裂带赤山段中晚更新世之交的 史前地震遗迹.地震地质,34(01):93-99.
- 25. 赵朋,姚大全,杨源源等,2017,郑庐断裂带安徽浮山段晚第四纪以来活动新发现.地震地质,39(05):889-903.
- 26. 杨源源,赵朋,郑海刚等,2017, 郑庐断裂带安徽紫阳山段发现全新世活动证据.地震地质,39(04):644-655.
- 27. 江苏省地矿局, 1974, 江苏省区域地质志, 地质出版社。
- 28. 胡连英, 1997, 江苏溧阳地震震源构造, 江苏地质, 3:43-50.
- 29. 胡连英,徐学思.江苏溧阳地震孕育和发生的地质因素剖析.江苏地质,2001(01):11-16.
- 30. 胡连英,徐学思,孙寿成.茅山东侧断裂现代运动的地貌学特征.江苏地质,1994(01):3-9.
- 31. 中国地震局地震预测研究所, 2006, 铜陵市地震小区划报告。
- 32. 刘国生.江南断裂带(皖南段)的变形特征及震旦纪以来的构造演化.合肥 工业大学学报(自然科学版),1997(03):100-105.
- 33. 徐嘉炜, 童卫星. 论东亚大陆的陆缘弧问题. 海洋地质与第四纪地质,1987(04):17-28.
- 34. 安徽省地质矿产局, 1987, 安徽省区域地质志, 地质出版社。
- 35. 杨志坚.江南一条中强地震带初探.地震地质,1988(02):14-18.
- 36. 安徽省地质局区域地质调查队, 1977, 1:20 万砀山幅、宿州幅、灵璧幅区域地质调查报告。
- 37. 安徽省煤田地质局勘察研究院,2003,1:10 万安徽省淮北地台区域赋 煤构造研究及基岩地质图编制成果报告。
- 38. 陈昌武,高远, 2016,利用地震资料研究活断层的方法和对煤矿安全开 采的意义.西部探矿工程,28(10):89-98.
- 39. 江苏省地矿局, 1979, 江苏省区域地质志, 地质出版社。
- 40.朱晓超, 2017, 金湖坳陷成因与构造演化,硕士学位论文,合肥工业 大学。

41. 王浩男, 2018, 无锡一宿迁断裂扬州段新构造期活动性研究,硕士学位论文,中国地质大学。